
Video Object Segmentation

D I S S E R T A T I O N

for the Degree of

Doctor of Philosophy (Electrical Engineering)

Fatih Murat Porikli

April 2001



Video Object Segmentation

D I S S E R T A T I O N

Submitted in Partial Ful�llment

of the Requirement for the

Degree of

Doctor of Philosophy (Electrical Engineering)

at the

POLYTECHNIC UNIVERSITY

by

Fatih Murat Porikli

April 2001

Approved:

Department Head

20

Copy No.



ii

Approved by the Guidance Committee:

Major: Electrical Engineering

Yao Wang
Professor of
Electrical Engineering

Date

Ivan Selesnic
Assistant Professor of
Electrical Engineering

Date

Huifang Sun
Deputy Director,
Mitsubishi Electric Research Labs

Date

Minor: Computer Science

Edward K. Wong
Associate Professor of
Computer and Information Science

Date



iii

Micro�lm or other copies of this dissertation are obtainable from

UMI Dissertation Publishing

Bell & Howell Information and Learning

300 North Zeeb Road

P. O. Box 1346

Ann Arbor, Michigan 48106-1346



iv

VITA

Fatih Murat Porikli received the B.S. and M.S. degrees in Electrical Engineering

from Bilkent University, Ankara, Turkey, and Polytechnic University, Brooklyn, NY,

in 1992 and 1996 respectively. Since then he has been working towards the Ph.D

degree in Electrical Engineering under the supervision of Prof Yao Wang, while also

working full-time.

In 1992, he started his graduate studies in both Electrical Engineering and

Sociology at Middle East Technical University, Ankara, Turkey. In 1993, he was

entitled to receive an overseas doctorate education scholarship. Upon arriving the

USA, he pursued towards his master degree at University of Southern California, Los

Angeles, CA, and then transferred to Polytechnic University, Brooklyn, NY in 1994.

While his doctorate studies, he was employed at AT&T Research Laborato-

ries, Holmdel, NJ where he worked on stereoscopic depth estimation techniques, and

Hughes Research Laboratories, Malibu, CA where he developed methods of unsuper-

vised road extraction from aerial imagery.

He joined Mitsubishi Electric Research Laboratories, Murray Hill, NJ in

2000. Upon joining Mitsubishi, he worked on algorithms for down-conversion de-

coding, network management, and optimal bandwidth allocation. More recently, his

work has focused on the segmentation of video sequences with emphasis on automatic

detection, semi-automatic tracking, and content analysis.

He holds twelve U.S. patent applications that are pending, and has published

a number of papers in these areas. He is a member of IEEE that he served as a reviewer

for many journal and conference papers.



v

To Sevda



vi

ACKNOWLEDGEMENT

I would like to thank God for the many days that I woke up and did not

know what to do, where to turn and how I would make it through. God has carried

me this far by faith, joy, peace, love and satisfaction, and I wish to continue being His

servant. I praise my Lord for blessing us beyond anything I could have ever imagined.

I am deeply indebted to my thesis advisor, Prof. Yao Wang, for her in-

formed guidance, understanding, support and encouragement through the years. Her

depth and vision in this area is truly admirable and she has been an inspiration to

me in many ways. Her patience and willingness to discuss the details of the di�erent

obstacles I encountered while working on this thesis were invaluable. I greatly appre-

ciate the many impromptu lectures she conducted on any available writing surface,

whether it be scratch paper or a white-board.

I would like to thank Prof. Edward K. Wong and Prof. Ivan Selesnic for

their precious time spent in reviewing this work and for their valuable input during

its development.

Upon joining Mitsubishi, I was fortunate to work under the supervision of

Dr. Huifang Sun. I am grateful to him for having the con�dence to hire me, for

creating such a stimulating work environment and providing guidance on a many

things. He has had a signi�cantly positive inuence on my development through his

role as both my manager and my advisor. Dr. Ajaj Divakaran became a mentor of

mine while we worked together to develop content analysis projects. His extensive

knowledge and enthusiasm as an educator introduced me to the breadth and variety

of the �eld of content analysis. I express my gratitude to our dedicated EVP, Dr.

Tommy Poon, for his leadership. I appreciate his vivid expertise and keen attention

to detail, and I thank him for the encouragement and support he has given me. I also

appreciate the e�orts of our current CEO, Dr. Dick Waters, as he continues to rede�ne

and unify the MERL. Working with our patent attorneys, Mr. Dirk Brinkman and



vii

Mr. Andrew Curtin has been an enriching experience. I would especially like to thank

the following people for their collaborative e�orts: Mr. Tokumichi Murakami, Mr.

Kohtaro Asai, Dr. Paul Ratli�, Dr. Miroslaw Bober and Dr. Leszek Cieplinski.

I feel very honored to have worked with so many distinguished colleagues

during the course of this thesis. I would especially like to thank Prof. Yucel Altun-

basak and Prof. Levent Onural, Prof. Enis Cetin for their valuable comments. I

would also like to acknowledge my previous collaborations, which continue to provide

a very integral part of my educational experience. I appreciate the various discussions

with Dr. David Schwartz, Dr. Roy Matic, and Dr. Cassandra Swain. I enjoy the

friendly interactions that I now have with them.

I would like to express my gratitude to Dr. Recep Senturk, for his precious

friendship and guidance throughout the years. He has never tired of answering my

questions. I feel very honored have good friends, especially Mr. Musab Kocak, Mr.

Mustafa Egilmezbilek, Mr. Goksen Elkas, Mr. Erhan Yilmaz, Dr. Sami Ayyorgun,

Dr. Abdulkadir Balikci, Mr. Levent Sendur, Dr. Kadir Peker, Dr. Zafer Sahinoglu,

and many others who remind me of the value of having good friends. Mr. Musab

Kocak has been a phenomenal source of new ideas and direction.

I also wish to thank everybody not mentioned here personally, but who

contributed in one way or another to the success of this thesis.

I would like to thank my loving and supportive wife, Sevda, who has always

supported me in my endeavors, always given me the strength and encouragement to

follow my dreams, and has never left me in doubt of her love for me. Without her

support, love and occasional kick in the pants, this thesis would have never been

written.

Finally, and above all, I thank my mother Kudret, my father Hane�, my

brothers Ersoy, Ugur, and my sister Arzu, for their love, understanding and never-

ending support.

Fatih Murat Porikli



viii

AN ABSTRACT

Video Object Segmentation

by

Fatih Murat Porikli

Advisor: Yao Wang

Submitted in Partial Ful�llment of the Requirements

for the Degree of Doctor of Philosophy (Electrical Engineering)

April 2001

In this thesis, the problems associated with the automatic object segmen-

tation of the video sequences are considered. Towards this goal, a unique framework

that combines various disciplines of image and video processing techniques ranged

from noise �ltering to data clustering is developed. The framework also addresses

a number of challenging issues associated with computational complexity, accuracy,

generality, and robustness.

One of the primary aims of this thesis is to study the fusion of color, tex-

ture, motion, shape, frame di�erence, and other methods of video segmentation for

automatic detection considering the real-time processing requirements. In contrast

to frame-wise tracking techniques, the employment of a spatiotemporal data that is

constructed from multiple video frames introduces new degrees of freedom that can

be exploited in terms of object extraction and content analysis. The current notions

of region segmentation are extended to the spatiotemporal domain, and new models

to estimate the object motion are derived.
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Another objective of this work is to explore techniques and algorithms that

provide eÆcient means of preprocessing of input video sequence. The newly designed

image simpli�cation and reconstruction �lters enable us to develop eÆcient algorithms

for noise removal, and they prevent from over segmentation diÆculties. The problem

of adaptation of system parameters and thresholds is formulated and solved. Also,

the relation between the color space and the similarity functions is investigated.

As a �nal objective of this thesis, a clustering problem that considers con-

struction of meaningful video objects from color homogeneous regions is examined.

Speci�cally, the �ne-to-coarse and coarse-to-�ne strategies are discussed. Novel de-

scriptors to evaluate the quantitative and relational attributes of the extracted objects

are introduced. Additionally, new sources of motion information is considered, such

as the trajectory de�nition of an object. Also, the area of multi-resolution object

representation is explored.
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Chapter 1

Introduction

If you will be observant and vigilant, you will see at every moment the
response to your action. Be observant if you would have a pure heart, for
something is born to you in consequence of every action.

Rumi

There has been light from the beginning. In all its forms - visible and invisible

- it saturates the universe. Usually, though, we don't see light, we merely see with it.

Ancient Greeks thought that our eyes acted as lanterns, sending out rays that made

objects visible when struck. This concept amazingly held for more than 15 centuries

until Arab scholar Al-Hazen about A.D. 1000 made convincing arguments otherwise.

Visual information reaching us by light plays an important role in our ability

to interact with the world. The eyes are probably the most important and amazing

of the body senses. Without the ability to process visual information, we would be

severely handicapped and it is therefore not surprising that approximately half of the

primate cortex is devoted to visual information processing.

Now, we are able to capture the light not only as invaluable memories but

also into various forms of media. By the turn of the century, the advancement in

digital video technology is determined to change our everyday lives since it has fueled

numerous applications and services which has never been possible with the analog

video technology. The most noticeable is videoconferencing, and more importantly,
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digital television, which has been marked to replace the analog one that we are so

accustomed to and has become so much a part of our everyday life.

Video grew into arguably the most popular means of communication and enter-

tainment. With this popularity comes an increase in the volume of video data and the

need for the e�ective techniques for analysis, mining, manipulation, and description

of visual information to sift through it and search for relevant material automati-

cally. Thus, advanced image processing, motion estimation, and object segmentation

techniques have turned into highly active �elds of research.

1.1 Motivation of Video Segmentation

More and more visual information is available in digital form, in various places

and on various media. The emergence of digital video and its proliferation in multi-

media applications has created a signi�cant demand for content-based representation

of visual information. Main purpose of video segmentation is to enable content-based

representation by extracting objects of interest from a series of consecutive video

frames. Briey, motivation behind video segmentation can be categorized as the

applications in indexing and retrieval, compression and coding, recognition, identi-

�cation, and understanding of video scenes, editing, manipulation, and animation.

Some sample uses of video segmentation are illustrated in Fig.1.1.

Video databases on the market today allow only limited capability of or domain

limited searching for video using characteristics like color, texture, and simpler motion

statistics. If video can be stored in the form of individual objects, indexing and

retrieval of visual information is as simple as that of textual information. An essential

tool in the management of visual records is the ability to automatically describe and

index the content of video sequences in a meaningful manner. Such a facility would

allow recovery of desired video segments or objects from a very large database of

video sequences. The eÆcient use of stock �lm archives and identi�cation of speci�c
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activities in surveillance videos are among the potential applications.

From compression point of view, video segmentation is essential for object-

based video coding standards, i.e. MPEG-4. Due to the vast data size of video se-

quences, communicating digital video over the bandwidth limited network sources de-

mands competent coding techniques. Having an object-based representation scheme

that identi�es the important parts of image frames, video sequences can also be en-

coded eÆciently to satisfy transmission requirements. Videoconferencing is one of the

applications bene�t from object-based coding.

Video segmentation is key to many robotic vision applications. Most vision

based autonomous vehicles acquire information on their surroundings by analyzing

video. Particularly, it is required for high-level image understanding and scene inter-

pretation such as spotting and tracking of special events in surveillance video. For

instance, pedestrian and highway traÆc can be regularized using density evaluations

obtained by segmenting people and vehicles. By object segmentation, speeding and

suspicious moving cars, road obstacles, strange activities can be detected. Forbidden

zones, parking lots, elevators can be monitored automatically. Gesture recognition as

well as visual biometric extraction can be done for user interfaces.

With a good segmentation, it is possible to access and manipulate objects in

video. To illustrate, traÆc enforcement currently employs supervised video segmen-

tation tools to acquire identity of speeding or trespassing cars. Infotainment industry

utilize video segmentation for editing, manipulating, and animation.

Although the human being can quickly interpret the embedded semantic con-

tent from the information carried by di�erent modalities, computer understanding of

visual information is still in its primitive stage. Good segmentation tools are crucial

to the success of the future standards. But tasks of automatically segmenting image

sequences into semantic meaningful objects prove to be very challenging. We have

currently a reasonably good understanding of the basic mechanisms underlying vi-

sual information processing, still, many questions are still open to investigation, some
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desperately waiting for an answer.

1.2 Object: A Bridge from Pixels to Semantic

We de�ne an object as a collection of image regions which have been grouped

together under some criteria across several frames. A region is de�ned to be a contigu-

ous set of pixels that is homogeneous in the features i.e., texture, color, motion, and

shape. It can also be speci�ed by a class membership function de�ned in color space;

as a plane, a cell, or fuzzy rules. Namely, a video object is a collection of regions

exhibiting consistency across several frames in at least one feature. For example, a

shot of a walking person \object" would be segmented into a collection of adjoining

regions di�ering in criteria such as shape, color, and texture, but all the regions may

exhibit consistency in their motion attribute. An object may be represented by the

union of several regions that may be connected or not.

Motion is a primary discriminating criterion of an object in video sequences.

In this thesis, an object implies a collection of consistently moving regions that have

distinguishable motion from the rest of the regions. For head and shoulders type of

sequences, skin color features are integrated into de�nition of object to determine

human body.

1.3 Elementary Categorization

There are common measures for all segmentation applications regardless of

their environments: generality, quality, adaptability, complexity, and promptness. A

segmentation framework is expected to meet these intervening requirements.

Ideally, an object extraction system should be generic, without any speci�c

prior knowledge of the type of color, shape, and motion to deal with. Whereas,

constraining video segmentation to speci�c applications enables development of robust
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Figure 1.1: By object segmentation, it is possible to (a) extract object shape for

coding, (b) analyze a video scene for event detection, (b) edit and manipulate a

video.
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schemes. This is particularly true for image sequences having well de�ned �gure-

background separation.

It should be able to provide accurate boundaries corresponding to a semantic

entity. Applications such as in entertainment where individual objects are manipu-

lated, require a high level of accuracy. However, in other applications, precision of

segmentation depends on the context.

It is desirable to achieve automatic segmentation with no human assistance

while allowing minimal user interaction to correct the possible errors produced by

the system. For instance, a surveillance system requires automatic tracking and

event analysis due to the cumbersome and costly monitoring of images from multiple

cameras by human operators. Still, when an event is detected, the system should

allow user to select object of interest, manipulate, track, etc. on it. On the other

hand, some applications, i.e. coding of videoconferencing sequences, demand constant

automatic segmentation.

Segmentation process should not consume an overwhelming computation power

to do the job either. The eÆciency and complexity of the required segmentation al-

gorithm depend considerably on the �eld of application.

Real-time implementation of video segmentation algorithms is not trivial be-

cause of the intensive computations and memory requirements involved. Not all

applications demand real-time segmentation. Server-side segmentation, i.e. object

extraction for video libraries, MPEG-4 video object plane extraction can be carried

out without pushing for promptness constraint. On the other side, applications such

as videoconferencing, surveillance, gesture recognition, auto-cruising vehicle systems

highly depend on prompt segmentation.

One way to speed up video segmentation is to use compressed domain clues,

or achieving a pre-segmentation in the compressed domain. Since the decoding is a

relatively expensive process, segmenting the object and extracting its features directly

from the compressed domain would be an e�ective way to achieve fast algorithms for
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searching a large database and indexing the object. The computation in uncompressed

domain is often formidable for large video databases.

1.4 Video Coding Standards

In order to compress video data for both eÆcient transmission and storage,

various techniques and international standards have been developed. To understand

why video compression is so important, one has to consider the vast bandwidth re-

quired to transmit uncompressed pictures.

MPEG is an encoding and compression system for digital multimedia content

de�ned by the Motion Pictures Expert Group. MPEG-1 is a standard for storage

and retrieval of moving pictures and audio on storage media. MPEG-2 is a backward

compatible version of the basic MPEG-1 system to provide compression support for

television quality transmission of digital video. The current MPEG-1 and MPEG-2

standards divide the images in small square blocks for processing to be able to adapt

their performance to the non-stationary image nature. Parameters of the algorithm

can be changed on block basis but real objects in a scene are never a collection of

square regions. When the compression is increased this annoying block structure

becomes visible in the decoded image which is also called as blocking e�ect.

MPEG-4 is an international standard for multimedia applications, and pro-

vides high interactive object-based functionalities, universal accessibility and robust-

ness in error-prone environments, and compression eÆciency. Unlike MPEG-1 and

MPEG-2 where the coding is performed on a frame by frame basis, MPEG-4 provides

an \object-layered" coding where each object is coded separately into a bitstream

layer. This feature allows the access and manipulation of individual audio-visual ob-

jects in the scene. MPEG-4 standard introduces the concept of video object planes

(VOP's). Each frame of the sequence may be segmented into a number of arbitrary

shaped VOPs where each one of these covers a particular video content of interest.
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Thus, in object-based coding, the input to be coded is no longer a rectangular region

as in block-based MC-DCT coding. Successive VOP belonging to the same object in

a scene are referred to as video objects. The shape, motion, spatial coordinates and

coding information of each video object are encoded into separate video object layer

in order to support separate decoding of objects. The user can either reconstruct

the entire sequence by decoding all video object layers, or reconstruct only some of

the scene objects. The manipulation of objects, such as translation, rotation, scaling

and zoom, is possible using information coded in bitstream layers. In addition, new

objects that did not belong to the original scene can be included, or objects may be

neglected.

MPEG-7 is a content representation standard for information search, and it is

also facing the same kind of challenges. Among the large set of functionalities involved

in a retrieval application, let us consider browsing. One would like to have access to a

table of contents of the video and to be able to jump from one item to another. This

kind of functionality implies at least a structuring of the video in terms of individual

shots and scenes. Of course, indexing and retrieval involve also a structuring of the

data in terms of objects, regions, semantic notions, etc.

1.5 Scope of Thesis

In this thesis, a segmentation framework is developed to �nd moving objects

of a color video sequence in uncompressed domain. The targets of this study can be

itemized as following:

� One primary objective is unifying advantages of color based region growing,

frame di�erence based change detection masks, shape descriptors, and motion

based segmentation methods into a computationally simple, adaptive, modular,

and e�ective algorithm.

� We present an algorithm that is automatic and unsupervised. Such supervision
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covers speci�cation of number of visible moving objects as well. The algorithm

determines an optimal number of objects by measuring similarity functions in

a clustering stage.

� Improving computational complexity is succeeded by preventing from dense

motion vector estimation, instead engaging in a simple but e�ective motion

extraction method. We accomplished approximation of translational motion

without using optical ow calculations.

� To attain generality, we target utilizing essential attributes of objects, and sup-

plied common video processing functions. To achieve adaptability for speci�c

applications, we devise object descriptors and adaptable system parameters.

� Modularity is another principal consideration. The segmentation framework is

set into two main stages that the �rst stage copes with low-level video process-

ing functions to provide homogeneous video components, and the second stage

constructs video objects. As output, an object-wise multi-resolution segmen-

tation tree that represents segmentation results for di�erent object numbers is

generated. Segmentation of the input video all over again, e.g. when the ob-

ject number is changed, is avoided by employing self and mutual descriptors of

homogeneous components to determine the video objects in the construction

stage.

� We evaluate various video attributes such as color, motion, shape, texture to

characterize video objects in terms of assigned descriptors. Descriptors are

structured to incorporate priori information about the nature of input video

such as MPEG-4 motion vectors as well as MPEG-7 descriptors.

� Color spaces are investigated to understand the e�ects of a color space on the

performance of volume growing based object segmentation. Suitable color space

is determined for speci�c applications.
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1.6 Outline of Thesis

In the next chapter, the existing methodologies related to the image and video

segmentation such as region growing, color histograms, motion estimation, spatiotem-

poral segmentation, object tracking, etc. are discussed. Their merits and disadvan-

tages are investigated from an object segmentation point of view.

Among the segmentation methods, region segmentation has often been re-

garded as a �rst step in image analysis with applications in scene interpretation,

object recognition and compression. Out of several 2D region segmentation tech-

nologies, histogram thresholding and clustering in color space, region growing, split-

and-merge, texture segmentation are summarized in detail. Estimating the motion

of articulated objects in image sequences is an important problem in computer vision

with many potential applications including image segmentation and interpretation.

Motion estimation is also utilized to eliminate the large amount of temporal and spa-

tial redundancy that exists in video sequences. Main issues related to block-matching,

feature-matching, optical ow, and motion models are highlighted. To overcome the

drawbacks of motion based approaches, it is important to incorporate spatial informa-

tion into motion segmentation. Under the spatiotemporal segmentation title, change

detection masks, stochastic approaches, morphological techniques, and other hybrid

methods that utilize both motion and spatial features are analyzed. In the remainder

of this chapter, we addressed the object tracking, compressed domain segmentation,

scene-cut detection, and data clustering, which are essential tools in video processing

and information-theoretic.

The following preprocessing chapter evaluates statistical and structural at-

tributes of a video sequence. A 3D spatiotemporal data structure that will serve

as a basis in the segmentation framework is de�ned and constructed from the video

sequence using its attributes. To determine a suitable color space, the e�ects of

color spaces on the performance of region growing based segmentation are evaluated.
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Several noise removal and simpli�cation �lters, and change detection masks are also

presented in this chapter.

For an automatic segmentation framework, �ltering has great importance on

the quality of the �nal segmentation results. Strong noise and certain spatial tex-

ture induce over-partitioning. Over segmentation has several disadvantages; it slows

down the algorithm, increases memory load by increasing the number of regions, more

importantly it causes an additional problem of clustering small regions of slightly tex-

tured image parts. Although image noise can be removed by using low-pass �ltering,

median �ltering, and morphological operators, such �lters often disturb the object

boundaries by smearing or completely changing the edge structure.

In the last chapter, an automatic segmentation framework is presented. This

framework takes a color video sequence between two scene-cuts as an input, and

generates a multi-resolution object tree as an output. By using a three dimensional

volume growing technique it �nds the smallest homogeneous parts of the video. These

volumes are expanded from the marker points using dual or centroid linkage methods.

Quantitative descriptors that represents each volume, and relational descriptors that

capture the mutual properties of a pair of volumes are determined by evaluating the

shape, trajectory and parameterized motion. Then, these descriptors are utilized

in clustering methods to construct objects. Adaptive thresholds, distance metrics,

extraction of homogeneous video components, re�nement processes, estimation of

trajectorial motion, quantitative and relational descriptors, construction of object

tree are explained in the rest of this chapter.
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Chapter 2

Background on Video Segmentation

There are two kinds of intelligence: One acquired, as a child in school
memorizes facts and concepts from books and from what the teacher says,
collecting information from the traditional sciences as well as from the
new sciences. With such intelligence you rise in the world. You get ranked
ahead or behind others in regard to your competence in retaining infor-
mation. You stroll with this intelligence in and out of �elds of knowledge,
getting always more marks on your preserving tablets.

There is another kind of intelligence, one already completed and pre-
served inside you. A spring overowing its stem. A freshness in the center
of the chest. This other intelligence does not turn yellow or stagnate. It's
uid, and it doesn't move from outside to inside through the conduits of
plumbing-learning.

This second knowing is a fountainhead from within you, moving out.

Rumi

Segmentation, especially video segmentation, has been a very active research

topic recently. Since several disciplines are included within, even a brief of the previous

work needs sizeable explanation.

Basically, video object segmentation techniques can be grouped into three

classes: region-based methods using a homogeneous color criterion, motion-based

approaches utilizing a homogeneous motion criterion, and object tracking. Some typ-

ical works in the color oriented domain can be classi�ed as single-level methods or
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multi-level approaches. In single-level methods, people traditionally use edge-based

methods, the nearest neighbor algorithm [35], or treat it as an estimation problem

[28]. Although these techniques work well in some situations where the input data

set is relatively simple, clean, and �ts the model well, they lack generality and ro-

bustness. Recently, multi-level methods have received signi�cant attention in the

research community, e.g., split and merge [71], pyramid linking [21], and morpholog-

ical methods [105]. Despite these new technologies provide better performance than

single-level methods, the results are still far from perfect. The main problem arises

from the fact that a video object can contain totally di�erent colors. On the other

hand, works in the motion oriented segmentation domain start with an assumption

that a semantic video object has homogeneous motion. These motion segmentation

works can be simply separated into two broad classes: boundary placement schemes

[117] and region extraction schemes [128], [2], [90], [18], [42]. Most of them are based

on rough optical ow estimation or unreliable spatiotemporal segmentation. As a re-

sult, they may su�er from the inaccuracy of motion boundaries. These two classes of

methods will also fail when a semantic video object have di�erent motions in di�erent

parts of the object. The last class of methods that is related to semantic video object

extraction is \tracking" [3]. Tracking is the process to estimate the current dynamic

state based on previous ones. It is the trajectories of the dynamic states that are

linked in a temporal form. Many types of features, e.g., points [107], intensity edges

[40], textures [15], and regions [87] can be utilized for tracking.

In summary, a single homogeneous color or motion criterion does not lead to

satisfactory extraction of complete semantic visual information because each homoge-

neous criterion can only deal with a limited set of scenarios. A semantic video object

may contain multiple colors and multiple motions. Therefore, any single criterion

could only lead to a partial solution for semantic visual information extraction. To

solve this problem, detecting shapes via user-selected points using an energy formu-

lation has been suggested [52]. This however requires human assistance to obtain the
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�nal results.

In the remaining of this chapter, several segmentation approaches are discussed

in detail. The next section is dedicated to image segmentation, which is one of the

most fundamental concepts of video processing and encompasses a wide spectrum

of techniques; vector-based methods, region growing, split-and-merge, morphological

operators, edge and texture-based segmentation. These intra-frame techniques often

utilize local color statistics, spatial aspects of color distribution, neighborhood con-

straints as well as color histograms. Vector-based methods can be broadly categorized

as color histogram thresholding and clustering of color vectors. Inter-frame motion

estimation is a well known problem in computer vision with many potential appli-

cations. Out of several motion estimation algorithms, block-matching, feature point

matching, optical ow, parametric and non-parametric motion models are presented

next. On the other hand, spatiotemporal segmentation methods attempt to utilize

both motion and spatial information to partition image sequence. These methods are

assorted as change detection mask approaches, stochastic approaches, morphological

approaches, and hybrid approaches. Another type of spatiotemporal segmentation

tracks video objects between the consecutive frames depending whether objects are

rigid, nonrigid, or have no regular shape. Unlike the above methods, compressed

domain segmentation methods use only compressed domain video features such as

DCT coeÆcients, motion vectors. The following section introduces an essential factor

of video segmentation; detection of scene-cuts. In the �nal section, data clustering

methodologies that are extensively utilized in segmentation are summarized.

2.1 Region Segmentation

Image segmentation is a partitioning of an image into related regions, and has

often been regarded as a �rst step in image analysis with applications in scene inter-

pretation, object recognition and compression. Color similarity, texture coherence,
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and edge properties are some of the metrics used to determine locally homogeneous

image regions. In general, most of the region segmentation algorithms fall under

color-based and texture-based methods.

Approaches to color-based segmentation range from empirical evaluation of

various color spaces [95], to clustering in feature space [14], to physics-based modeling

[79]. An appropriate color representation provides a more eÆcient way of dealing with

color information. Thus, the �rst step of color processing is the selection of a suitable

color space. There are a wide variety of segmentation techniques that have been used

for color image segmentation, their algorithms are generally edge oriented, region

oriented and clustering oriented, which are either based on the concepts of similarity

or discontinuity of feature values at the pixel level.

Edge-based segmentation takes into account that edges are boundaries between

segments, edge detection is used to detect edges based on searching local disconti-

nuities, tracing algorithms are applied to link edges into continuous and connected

segment boundaries. Edge detection techniques are suitable for detecting linear fea-

tures in the image, they have the disadvantage of producing low level segments even

after considerable processing, detected edges sometimes may not form a set of closed

curves which surround connected regions.

Region-based segmentation separates color image into homogeneous regions by

its color feature similarities. Thresholding, region growing, region split-and-merge,

dilation/erosion are standard region-based segmentation techniques. Region-based

segmentation has the advantage of producing high level segments, however, extracted

region may not correspond to actual physical objects unless the intensity of each pixel

in regions di�ers from background.

Vector-based methods are divided into two groups; histogram thresholding

and vector clustering. Histogram thresholding identi�es one or more peaks within

the color histograms. Surrounding intervals in these histograms are then utilized in

a pixel classi�cation process. Clustering-based segmentation is in fact a procedure of
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unsupervised pattern classi�cation. It refers to grouping a given set of color vectors

into subsets. A subset is required to contain vectors that are similar to one another in

color properties than to vectors in other subsets. Similarity is measured using color

distance from a vector to a subset center. Still, the result of clustering is seriously

a�ected by the initial values at the beginning of clustering. In some techniques, fuzzy

membership functions is evaluated for all pixels and for all fuzzy subsets de�ned.

Then, hard subsets of pixels are obtained by defuzzi�cation process and subdivided

into connected regions.

2.1.1 Histogram Thresholding in Color Space

Histogram based segmentation techniques attempt to remedy a number of de-

�ciencies on simple thresholding by automating threshold selection and coping with

multi-modal distributions as illustrated in Fig. 2.1. Additionally, histogram seg-

mentation compensates for shifts in mean intensity level since the image intensity

histogram distribution is considered, rather than examining the intensity values di-

rectly, as in thresholding. Hence, histogram segmentation is invariant to additive

intensity variation. Histogram segmentation has no explicit notion of connectivity,

here is an implicit assumption that pixels with similar intensities belong to the same

regions, while this may not true in general.

Chu [33] models the image intensity histogram distribution of the object and

background as the combination of two normal distributions, the background being the

most signi�cant. After determining the background mean and standard deviation, a

threshold for a given pixel belonging to the background is chosen. By thresholding,

pixels are segmented as object or background.

Bonsiepen [16] proposed single threshold computation in bimodal histograms.

A scalar feature is extracted from the rgb parameters to unify three color bands.

A threshold was found in the minimum point of the very well separated bimodal

histogram built for the feature. Obviously, due to the con�dence limit, some pixels
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Figure 2.1: By thresholding in color space, an image is divided into two parts with

respect to its color histogram.

will always be labeled as object, irrespective of whether an object is actually imaged.

Ohlander [94] used nine features collected from RGB, HSI, and Y IQ color

systems to select the best peak from color histograms. First, all peaks in the set

of histograms are located. The list of peaks of the lowest priority is built. The

best peak on this list is determined and threshold values are chosen on each side of

this peak. Connected regions are selected by using the thresholds, and this process

repeated until no image point remains. Basic scheme is improved by removing of

small regions, working on reduced image version, adding density of edges as another

feature.

Ohta's [96] algorithm is essentially very similar to Ohlander's, but he suggested

new data structures for more eÆcient implementation in both time and space. He

applied the Karhunen-Loeve transformation to color images to derive features with

large discriminatory power. Ohta determined from experiments on eight color images

that an e�ective set of color features is given by

f1 =
R +G+B

3
; f2 = R �B; f3 =

2G�R� B
2

(2.1)
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where f1 is the most e�ective for segmentation and f3 is the least e�ective. If any

of the histograms show conspicuous peaks, a pair of cut-o� values which separate

the peak in the histogram are determined at the positions of valleys, and the image

of the color feature corresponding to that histogram is thresholded using the cut-o�

values. Ohta experienced with Ohlander's algorithm to determine empirically whether

a small number of color features might be adequate for segmentation. Though Ohta's

analysis improves the Ohlander algorithm, it is insuÆcient to claim that eight images

will be enough to lead to the determination of color features which are universally

e�ective for segmentation. Another misleading argument on Ohta's color features

is that the most signi�cant color feature f1 depends on the object geometry, i.e.,

intensity changes due to the shape of the objects.

Finding peaks and basis in the 2D histogram of the opponent color pairs is

proposed by [57]. RGB values are transformed to the opponent color pairs red-green

RG, yellow-blue Y B, and the intensity function I. The three channels are smoothed

by applying band-pass �lters. Then peaks and basis in the 2D RG-Y B histogram are

searched for. Peaks and basis points determine areas in the RG-Y B plane. Pixels

falling into one of these areas create one region. Pixels falling into another area

create another region. Due to this de�nition there remain some non-attached parts

in the image. Holla suggests to include additional features as luminance or the local

connection of pixels into the segmentation process to enhance the result. A similar

approach is reported by Stein [111] that an additional re�nement process is employed.

If one or more pixels in the 3x3 neighborhood of a non-assigned pixel are assigned

to the same region, the pixel is marked for assignment to this region. No decision is

made if none of the pixels in the 3x3 neighborhood is assigned or if several pixels in

the 3x3 neighborhood belong to di�erent regions.

Lin and Chen [74] selected the HSI space for road following and compared the

results with those computed in the RGB space. Assuming that roads appear bright

and with low saturation and non-road areas correspond with low intensity and high
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saturation, they reduced the segmentation process to a 1D search problem.

Tominaga [118] presented a method that �nds peaks and basis in the 1D his-

tograms of the three components HSV of the Munsell space. Since no analytical

formula exists for the conversion between the CIE standard system and the Munsell

system, conversion is based on a table. First, the entire image is regarded as one re-

gion, and histograms are computed for each attribute of H, S, and V . The histograms

are smoothed by an average operator. Then, the most signi�cant peak is found in

a set of three histograms. The peak selection is based on the shape analysis on the

histogram. After some clear peaks are selected, a criterion function is calculated for

each candidate peak

f =
SpT

RFp
(2.2)

where Sp denotes a peak area between two valleys v1 and v2, Fp is the full-width at

half-maximum of the peak, and T denotes the overall area of the histogram, that is

the total number of pixels in the speci�ed image region. R is the full range of the his-

togram. The image is thresholded using two thresholds derived from the lower bound

v1 and the upper one v2 for the most signi�cant peak in the set of three histograms.

And then image region is partitioned into two sets of subregions; one consists of subre-

gions corresponding to the color attributes within the threshold limits, and the other

is a set of subregions with the remaining attribute values. The thresholding process

is repeated for the extracted subregions. If all the histograms become monomodal,

the cluster detection is to be �nished and a suitable label is assigned to the latest

extracted subregions. The segmentation process is terminated when an area of the

regions is suÆciently small in comparison to the original image size or no histogram

has signi�cant peaks.
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Figure 2.2: The color cluster of the target region is obtained and modeled for seg-

mentation.
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2.1.2 Clustering in Color Space

Clustering-based segmentation refers to grouping of a given set of color vectors

into subsets, and is a procedure of pattern classi�cation as illustrated in Fig. 2.2. A

color clustering-based method using the nearest neighbor algorithm is proposed by

Ferri [45]. Supervised clustering is performed in a 10 dimensional color feature space

consisting of feature vectors based on the chromatic components of Y UV color space.

He extracted prototypes of objects in terms of color feature vectors using manually

segmented training images. The number of the prototypes is decreased by applying

a condensation technique. This algorithm is speci�ed for certain images, e.g., a scene

consists of leaves, fruits, and sky. It requires information of the object shape to decide

prototypes, therefore not suitable for general purpose, automatic segmentation.

Another speci�c purpose color segmentation algorithm is developed by Um-

baugh [121] for skin tumor identi�cation. Representatives are obtained by median

splitting process in Karhunen-Loeve transform in color space. Namely, at each sub-

division step the most occupied box is chosen. The axis with the maximum range

is taken and splitted in median point on that axis. The subdivision is continued

until the speci�ed number of boxes is obtained. Then representatives are taken as

gravity centers. Pixels are classi�ed by minimum distance to gravity centers. The

authors report the best classi�cation results for chromatic coordinates, but from the

text we can only guess that a sort of rgb was used. The knowledge base was de�ned

by dermatologists.

Skarbek [109] used principal component analysis. The rgb space is preferred

and color statistics, e.g., directional variance, are computed by using all the image

points. Pixels in a region are assigned to a leaf in the median tree. This tree is created

by splitting of the color space by a plane perpendicular to the direction of biggest

variance going through the median point. Splitting is terminated if a uniformity

condition becomes true.

In [24], segmentation is considered as a recursive cluster detection problem.
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The method operates in the Lab color space and detects image clusters by �tting

some cylindrical decision volumes. The peaks and valleys in the 1D histograms of L,

a, and b are found, and boundaries of the clusters are determined. Boundaries of the

decision elements consist of two planes of constant lightness, two cylinders of constant

chrominance, and two planes of constant hue. The detected clusters are then isolated

from their neighbors by projecting their estimated color distributions onto the Fisher

linear function for 1D thresholding.

Lucchese and Mitra [76] used 2D k-means clustering using color information,

and then associating these clusters with appropriate luminance values, using 1D k-

means algorithm.

In [56], Hild de�nes knowledge indexing as �nding relevant pieces of knowl-

edge in a knowledge base with the help of a set of descriptive properties, called index.

There is an aÆnity between indexing and matching. While matching refers to es-

tablishing correspondences between a set of properties of a stored model, the role of

indexing is to establish connections to models or parts of models without verifying

the appropriateness of these connections. Thus, an index can be used as a hypothesis

of the object depicted in the image. The segmentation process is used to �nd relevant

features that can be used as indices into a knowledge base. The author uses the HSI

color space, and propose to divide the hue into 19 di�erent partitions. Then, the

image is projected into these partitions and the pixel density is calculated in each

of the partitions. Hue clusters are grouped since they de�ne chromatic features that

can be used as indices into a knowledge base.

2.1.3 Region Growing

Taylor [116] proposed a region growing technique starting from seeds and ex-

tending regions by one pixel in each step as simulated in Fig.2.3. Then, a boundary

relaxation method is used as a correction technique for already coarsely segmented

image. He utilized an HSI alike color space. Region growing starts from a seed in
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Figure 2.3: In region growing, a region is grown by similarity criteria around a seed

point.

the form of 2� 2 image blocks. An adjacent pixel p is added to region R if its color

distance 	(R; p) from the centroid is less than a threshold � that is experimentally set

to 10% of the distance between black and white points in the color space. Boundary

relaxation is done by each pixel as follows: If p 2 Ra and p is adjacent to Rb and

moving p from Ra to Rb reduces 	(Ra; p)+	(Rb; p) and maintains 	(Rb; p) < � then

move p from Ra to Rb. If there is more than one possible move then the one giving

the lowest 	 across all regions involved, is performed.

In Meyer's [85] algorithm, region growing is done using the topographic water-

shed algorithm in the RGB space. The basic idea of the watershed algorithm may be

understood as a ooding process of this topographic surface. At each minimum of the

map a water source is de�ned. Then water is pumped from each water source. During

this procedure, the level of each lake increases with uniform speed. Water sources or

seed points for region growing, respectively, might be found by calculating the minima

of the gradient image. Starting from these seed points a hierarchy for region growing

is established based on the di�erences between the intensity value of the seed point
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and the intensity values of the neighboring pixels. First, all neighboring pixels of a

seed point get the same label as the seed point itself if their intensity di�erence is

zero. Afterwards, all neighboring pixels of a seed point get the same label as the seed

point if their intensity di�erence is 1. Then the di�erence level is further increased

and the procedure is continued until all pixels in the image are labeled. When this

scheme is applied to color images, the seed points are found by calculating the min-

ima of the gradients in all three color channels. Due to computational eÆciency the

author employed the maximum norm to measure the color di�erence between two

pixels. Some additional information is needed to avoid over-segmentation. It has to

be known in advance which minima are relevant and which are not.

Priese [99] designed a bottom-up region growing and top-down separation

technique. In a preprocessing step, color values are smoothed by replacing them by

the mean value of the adjacent pixels in a hexagonal structure. The segmentation

is based on a hierarchical organization of hexagonal structures. At the lowest level,

local region growing is applied and connected regions of small size are obtained. These

connected regions are treated as pixels at higher levels. The distance between the

color contents of R1 and R2 is measured to decide whether two neighbored regions

R1 and R2 become connected. The decision whether to combine or not is formulated

as a predicate 	(R1; R2). As the color models are 3D, distance metric 	 is a 6D

predicate. Instead of using metrics, Priese suggests to use a navigation in these 6D

spaces to compute whether 	 holds. As the level n in the hierarchy may inuence 	;

	 is treated as a 7D predicate 	(R1; R2; n). This predicate is only computed for those

regions that are candidates for merging to avoid mismatches. One simple criterion

for being candidates is that both regions have a common boundary. To create a

second criterion, both regions R1 and R2 are linked by a chain p1:::pk of pixels that

are pairwise connected due to 	(pi; pi+1; 0) for 1 � i < k, p1 2 R1; p2 2 R2. If two

candidates R1 and R2 are not similar according to 	(R1; R2; n), a mismatch of their

aggregated color values is detected despite a linking chain between R1 and R2.
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Figure 2.4: The partitioning of the 5� 5 blocks in Fesharaki's method.

Image pixels are merged based on the minimum Euclidean color distance in

a four-connected neighbourhood in Vlachos's work [124]. The process of image seg-

mentation is considered in a graph-theoretic context. The suppression of arti�cial

contour is formulated as a dual graph-theoretic problem. A hierarchical classi�cation

of contours is obtained which facilitates the elimination of the undesirable contours.

Regions are represented by vertices in the graph and links between geometrically ad-

jacent regions have weights that are proportional to the color distance between the

regions they connect. The link with the smallest weight determines the regions to

be merged. At the next iteration of the algorithm the weights of all the links that

are connected to a new region are recomputed before the minimum-weight link is

selected. The links chosen in this way de�ne a spanning tree on the original graph

and the order in which links are chosen de�nes a hierarchy of image representations.

The algorithm presented by Fesharaki [46] is based on testing the homogene-

ity of pixels around a centre pixel by using statistical inference techniques. A 5 � 5

window around each pixel is partitioned into two subregions in four di�erent orien-

tations as shown in the Fig. 2.4. Two hypotheses are formulated about pixels in the

neighborhood. H0: all pixels in the given neighborhood belong to one homogeneous

region, or H1: they belong to at least two di�erent homogeneous regions. If the null

hypothesis is accepted, the center pixel in the window is considered to be part of a ho-
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mogeneous region. Assuming that A and B are mutually independent and come from

two populations, the null hypothesis may be stated as H0 : P (A � �) = P (B � �)

for all con�dence levels �. This means if the di�erence between the two cumulative

distributions is less than some threshold that is correlated to �, the adjacent subre-

gions are similar. To verify this hypothesis, the cumulative distribution functions of

two subsamples are compared with each other. The Kolmogorov-Smirnov statistics

considers the base for the veri�cation of the homogeneity of the two subsamples since

it is more suited for comparing the cumulative distributions of small samples of pop-

ulations. The results obtained in the three color channels are blended by Boolean

\and" operator. In region growing, each pixel is considered as a region. A 2 � 2

window containing the left and above pixel is moved across the image. Neighboring

pixels are candidates for merging if the related signals are set. For example, each

pixel is allowed to merge with its adjacent left pixel, if either its left merge signal or

the homogeneous signal computed from its left pixel is set. The same procedure is

carried out for merging the current pixel with the pixel above. If it is not allowed to

merge with its adjacent pixels, a new label is assigned. If it is allowed to merge with

both its left and above pixels, the minimum label of those two pixels is assigned to

that pixel.

Ji and Park [66] used the arti�cial neural networks to merge homogeneous

regions based on the information of the luminance, the chrominance di�erence, and

the region proximity. Wu and Reed [131] used a region-growing method, a Gibbs-

Markov random �eld model and contour relaxation.

Westman's approach [130] consists of two processing steps. First, pixel values

are substituted by averaging the values of four nearest pixels. A nearest neighbor of

a pair is the one closest in color value to the centre value. In the modi�ed version,

a tolerance for local directional contrast is used to detect when a center pixel is part

of a thin structure that outlies the symmetric pair lying in a background. If the

center is an outlier (ridge, valley) with respect to a pair, then the center value is left
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Figure 2.5: Watersheds correspond to boundaries between regions.

�xed. After, a region growing technique is applied based on hierarchical connected

components analysis. In the �rst pass, all pixels are assigned labels by comparing

them with the four adjacent labeled pixels above and to the left (8-connectivity).

Adjacent pixels are merged if their color di�erence is lower than a predetermined

threshold value. For each region the labels of adjacent regions, the average edge

contrast between adjacent regions, and the lengths of the borders between adjacent

regions are stored in a region adjacency graph. In the second stage, for each region

starting from the one with the smallest label, the neighboring regions with an average

edge contrast smaller than a threshold epsilon are merged and the adjacency graph is

updated. The region-merging step is iterated using gradually increased epsilon values

if the multi-stage version of the algorithm is employed. The authors obtained about

equally good results employing the maximum metric as employing the Euclidean color

metric.

2.1.4 Morphological and Edge Based Techniques

Watershed is a morphological technique derived from elevation maps, the phys-

ical analogy is to regard the image intensity as a height, a \rain drop" falling on a

given pixel will collect at a given point, pixels sharing the same collection point will be

grouped together. The boundaries between collection regions are termed watersheds,
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image segments correspond to the catchment basins delineated by the watersheds as

in Fig.2.5. Watersheds are formed from the inuence of two or more \catchment

basins", hence the location of a particular watershed cannot be determined from con-

sideration of a single catchment basin, i.e. watershed location is entirely dependent

on the interactions between image structures. If an image contains only a single

catchment basin, then no watersheds will be formed. Watersheds of image intensity

appear to be independent of gradient magnitude, but dependent on gradient direc-

tion and curvature. Due to the independence of watersheds to gradient magnitude,

they may fail to provide a physically desirable segmentation in the presence of a at

plateau. The watershed technique is invariant to additive and multiplicative intensity

variation and does not require an explicit threshold. From the examples shown in

[123], it appears that watersheds may tend to \overthreshold" intensity images, but

may be more applicable to gradient images.

In edge based segmentation, edge pixels are joined to delineate image regions,

e.g. [44] which uses a technique known as sequential edge linking. Edge linking

techniques su�er from a number of problems, since not only must edge pixels be

linked into edge lists, these lists must also be linked so as to extract closed regions.

Indeed, the closure problem is not straightforward to solve, since many edges may

terminate in the same location or conversely large gaps may need to be bridged

between edges.

2.1.5 Split and Merge Techniques

Split-and-merge algorithms start from nonuniform regions, and subdivide them

until uniform ones are obtained, then apply some merging heuristics to �t them into

a maximal possible uniform area.

One class of algorithm attempts to merge \atomic" image elements so as to

form image segments, avoiding the necessity for an explicit split function, e.g. by

using uniform intensity image regions as \atomic" elements. Generally some form
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of mergestrength function is de�ned for adjacent regions, based on e.g. similarity

in intensity distribution, gradient/edge strength between segments, etc. Lim and

Park [73] merge adjacent regions with the highest mergestrength �rst, followed by a

recalculation of the new inter region mergestrengths. These steps are iterated until

some appropriate threshold is obtained. Quadtree techniques (Fig.2.6) are a subclass

of split and merge segmentation schemes, they perform probability tests on image

regions as

1. Split into four disjoint quadrants any current image region Ri if P (Ri) = 0,

2. Merge any adjacent regions Rj and Rk for which P (Rj [Rk) = 1,

3. Stop when no further merging or splitting is possible.

where P (R) is the probability that the image region R is a single image segment. The

probability test P is generally based on statistical properties of the region intensities

under consideration, e.g. Choo et al. [32] use mean and standard deviation of image

intensities, however, any region test should be invariant to block size.

In Schettini's work [106], splitting is made by sequential histogramming for

�ve color features from the Luv space as in [94], but with another peak detection

technique. At the �xed scale peak of histogram is chosen using Tominaga's [118]

criterion. The best peak is chosen for all �ve histograms. All pixels with color

between arguments giving half peak are taken to one region from which connected

components are extracted. The procedure is repeated recursively for all remaining

pixels. At the end of splitting phase, the very small regions are merged to adjacent

one with the closest color. Global dissimilarity measure  (ij) of two adjacent regions

is de�ned using distance 	ij and region adjacency measure Cij

 (ij) =
	ijCij

4
(2.3)

Cij =
min(Pi; Pj)

4Pij
(2.4)
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Figure 2.6: Quadtree representation of block-wise region splitting.

	ij = max
k=L;u;v

	ij(k) (2.5)

	ij(k) =

q
Ni +Nj�xik � �xjkq
Nis2ik +Njs2jk

(2.6)

where Pi is the perimeter of i
th region and Pij is the perimeter of common boundary

ith and jth regions. In one step of the merging phase two adjacent regions are joined

if their dissimilarity measure  (ij) is minimum. The merging phase is terminated if

there is no candidates for merging. Two adjacent regions are candidates for merging

if the following inequalities are true

	ij < 4; 0:5 � Cij � 2;  (ij) < 1: (2.7)

The perceptual HSI space is employed in [120]. He suggests to split up the

color image into chromatic and achromatic areas to determine e�ective ranges of hue

and saturation. The criteria for achromatic areas were measured by experimental
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observation of human eyes and are de�ned as follows

case 1 : I > 95 _ I � 25

case 2 : 81 < I � 95 ^ S < 18

case 3 : 61 < I � 81 ^ S < 20

case 4 : 51 < I � 61 ^ S < 30

case 5 : 41 < I � 51 ^ S < 40

case 6 : 25 < I � 41 ^ S < 60

After an image has been segmented into chromatic and achromatic regions, chromatic

regions are further segmented using hue histogram thresholding. Achromatic regions

are segmented using intensity histogram thresholding. If the saturation histogram of

a chromatic region has obvious variation distribution, the region will be split based

on the saturation histogram. The signi�cance of a peak is measured according to a

sharpness function

S =
Tp
Wp

(2.8)

where Tp denotes the total number of pixels between two valleys andWp is the distance

between those valleys. A peak is chosen if its S value is greater than the prede�ned

thresholds (in the experiments S > 256 for hue histograms and S > 1536 for intensity

histograms). A further process is applied to avoid over segmentation. An 8� 8 mask

is evenly divided into 16 2 � 2 submasks. If there is at least a chromatic and an

achromatic pixel in the 2�2 submask, then the submask has a vote to the dispersion

of the mask. A special label is assigned to the 8�8 region if the mask possesses more
than seven votes. After convoluting the mask throughout the image, region growing

is used to merge the labeled regions with the segmented regions or to form some new

regions based on the idea of clustering in the HSI space.
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2.1.6 Texture Segmentation

Among other region properties such as color, shape, or motion, texture is one

of the most prominent image attributes in both human and automatic image anal-

ysis. Fig. 2.7 shows a sample texture segmentation result. There are a number of

di�erent de�nitions for texture. What all de�nitions have in common is the fact that

they describe texture as an attribute of an image window. This attribute represents

spatial arrangement of the gray levels of the pixels in a region, and provides a mea-

sure of properties such as smoothness, coarseness, and regularity. Texture is also

described as extended patterns based on the more or less accurate repetition of some

unit cell. As such, textures have statistical properties, structural properties, or both.

They may consist of the structured or random placement of elements, but also may

be without fundamental unit cells. With respect to relevance with biological vision,

automated texture segregation e�orts have resulted in two broad categories: human-

vision-related and pure machine vision texture segregation models. In the �rst belong

models that are designed to produce results that correlate well with human perfor-

mance, when tested with the same classes of stimuli. The algorithms and models in

the second category perform texture segregation on input images without necessarily

employing neurophysiological principles. There are numerous broader theoretical re-

views on texture analysis algorithms [54], [101]. The feature set of Haralick et al. [53]

is probably one of the most famous methods of texture analysis. It is based on the

calculation of the co-occurrence matrix, a second-order statistics of the gray levels in

the image window. In order to reduce the computation time necessary to calculate

the co-occurrence matrix, Unser has suggested a method to estimate its coeÆcients

using a �rst-order statistic on the image window [122]. He suggests sum and di�erence

histograms on the gray levels. Galloway has proposed a run-length based technique,

which calculates characteristic textural features from gray-level run lengths in di�er-

ent image directions [50]. The basis of the calculation of the features is a run-length

matrix. Sun and Wee [115] de�ne �ve features from a modi�ed Haralick approach.
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Figure 2.7: An image consisting 16 textures, and its texture segmentation.

They calculated statistics in an 8-neighborhood and are therefore less dependent on

image rotations. Chen [29] decomposes a gray-level image into a sequence of binary

images and calculates features from geometric properties of the resulting blob regions.

Laws has suggested a set convolution masks for feature extraction [72]. There are �ve

1D �lter masks with the labels \level," \edge," \spot," \wave," and \ripple". From

them, various 2D �lter masks can be constructed. Pikaz and Averbuch [98] calculate

textural features from a sequence of graphs of the number of 4-connected structures

in the binarized image. In addition to the above methods, local texture features that

contain statistical features and gradient features are also calculated directly from the

original image window.

Bergen and Adelson [12] use the local energy of linear oriented �lters at various

scales to account for scale invariance in texture segmentation. Good �ts are also

achieved by Sagi and his colleagues, who use a similar energy approach [103]. Sperling

[110] di�erentiates between �rst-order linear and second-order nonlinear rectifying

regimes. The same analogy is made by Clark, Bovik, and Geisler [19], who use

the spatially pooled amplitude and phase responses of Gabor �lters; they recognize
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that their implementation o�ers primarily a machine vision method, as does that of

Voorhees and Poggio [125]. Fogel and Sagi [48] and many others suggest the use of

Gabor wavelets for feature extraction. Gabor wavelets can be used to extract a certain

wavelength and orientation from an image with a speci�ed bandwidth. Because the

Gabor �lter is a quadrature �lter, the \energy" of the signal in the �lter band can be

determined by computing the square magnitude of the complex �lter response. Laine

uses a wavelet decomposition with Daubechies wavelets and takes the energies in

the di�erent �lter bands as features [49]. While many wavelet transforms do a multi-

resolution analysis by successively transforming only the lowest-resolution subimage of

each decomposition step, Laine has decided to do the decomposition for all subimages

successively. For extracting textural features, an energy value is calculated for each

subimage in a decomposition sequence by summing over the squares of all pixel values

in the subimage.

In Kashyap et al. [68], a Markov random �eld approach is chosen to extract

seven di�erent textural features. Markov random �elds model a texture by expressing

all gray values of an image as a function of the gray values in a neighborhood of each

pixel. Amadasun and King [5] use an approach similar to that of co-occurrence matrix,

but do not construct a 2D co-occurrence matrix. Instead, they average the di�erences

for each gray-level value of the central pixel and construct features from this histogram

distribution. Malik and Perona [77] model human pre-attentive texture perception

in three stages which have close parallels with Caellis [22] model: i) Convolution of

the image with a bank of orientation- and frequency-tuned �lters, followed by half-

wave recti�cation, to \model outputs of V1 simple cells." ii) Inhibition, localized in

space within and among the responses, to suppress spurious responses in the presence

of stronger ones. iii) Spatial pooling and texture edge extraction by odd-symmetric

mechanisms.
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2.2 Motion Estimation

Estimating the motion of articulated objects in image sequences is an impor-

tant problem in computer vision with many potential applications including image

segmentation and interpretation. Motion estimation is also utilized to eliminate the

large amount of temporal and spatial redundancy that exists in video sequences. In

conventional predictive coding the di�erence between the current frame and the pre-

dicted frame based on the previous frame is coded and transmitted. There are a large

number of motion estimation algorithms for predictive coding and video segmenta-

tion.

2.2.1 Block-Matching

The most frequently used motion estimation algorithms are block-matching

algorithms. The main idea of block-matching is to divide the current frame into

blocks and then �nd the best match block in the previous or next frame for a given

matching criterion. All pixels of a block are assumed to undergo the same translation,

and are assigned the same correspondence vector. The selection of the block size is

crucial. Large windows might contain more than one motion and cannot accurately

locate motion boundaries, whereas small windows often results in wrong matches

within uniform regions in the presence of noise. Because real objects in real scenes

do not coincide with the block boundaries, block-matching algorithms su�er from

certain drawbacks. This is particularly obvious for the blocks that include multiple

moving objects within. A weakness of block-matching algorithms is their inability to

cope with rotations and deformations. Block-matching results in block patterns in

the motion-vector �eld. The human visual system is very sensitive to such artifacts,

especially abrupt changes which are located in the high frequencies. Nevertheless,

their simplicity, suitability for online applications and relative robustness make it

very popular technique. To speed block-matching, sub-optimal solutions are also
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Figure 2.8: Sub-optimal block matching methods. Colored numbers represent con-

secutive stages of search algorithm.
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developed as demonstrated in Fig.2.8.

Block-matching is mainly developed for motion-compensated prediction and

block-based video coding. Since hardware implementation of block-matching is quite

simple, block-based motion representation and compensation have favorably been

adopted in video compression standards such as H.261, MPEG-1, and MPEG-2. How-

ever, in order to limit the number of motion vectors that need to be transmitted, a

single motion vector is estimated for each 16� 16 square block.

2.2.2 Feature Point Matching

Feature-matching algorithms are based on extracting a set of relatively sparse,

but highly discriminatory features such as corners, occlusion boundaries of surfaces,

and boundaries delimiting changes in surface reectivity. Such points, lines or curves

are extracted from each image. Inter-frame correspondence is then established be-

tween these features. Constraints are formulated based on assumptions such as rigid

body motion, i.e., the 3D distance between two features on the rigid body remains

same after object-camera motion. Such constraints usually results in a system of

nonlinear equations. The observed displacements of the 2D image features are used

to solve these equations leading ultimately to the computation of motion parameters

of objects in the scene.

Feature-based approaches require that correspondence be established between

a sparse set of features extracted from one image and those extracted from the next

image in the sequence. Although several methods have been discussed for extracting

and establishing feature correspondence, the task is diÆcult and only partial solutions

that are suitable for simplistic situations have been developed. In general, the process

is complicated by occlusion which may cause features to be hidden, false features to

be generated and hidden features to reappear. Much work needs to be done in this

area before the advent of one or more general techniques that can be reliably applied

to real imagery.
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Sensitivity to noise is also a problem with the feature based techniques. The

techniques reported in the literature have all been only marginally tolerant to the

noise. One method of decreasing the sensitivity to noise has been to use more than

the required minimum number of features in an iterative least-squares techniques.

Although this usually has a smoothing e�ect, it can cause additional complications.

For example, if all the additional points chosen are coplanar, then all that has been

achieved is a signi�cant increase in the computation time and probable instability

of the solution. The establishment of correspondence also becomes computationally

expensive.

2.2.3 Optical Flow

In comparison, optic ow based approaches do not require any feature corre-

spondence to be established. It also assumes pixels belong to the same objects in

successive frames have the same brightness as the conservation of mass in uid dy-

namics. Optical ow is a di�erential method based on the idea that the brightness

is continuous for most points in the image, neighboring points have approximately

the same brightness. In other words, the world is made up of continuous objects over

which brightness varies smoothly. It also assumes pixels belong to the same objects

in successive frames have the same brightness as the conservation of mass in uid

dynamics. To understand this property, let's write the continuity equation for the

optical term by omitting the second order terms

@g

@t
+ urg = 0 (2.9)

where g is the brightness function, and u is the velocity vector. In one-dimensional

case, the above equation takes the simple form

@g

@t
+ ux

@g

@x
= 0 (2.10)
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Figure 2.9: Simulation of optical ow estimation for rubics cube sequence.

from which we can directly determine one-dimensional velocity

ux = �@g
@t
=
@g

@x
(2.11)

provided that the spatial derivative does not vanish, i.e. brightness is continuous.

Note that apparent motion and 2D motion are not equivalent. Consider a static scene

with varying illumination. The 2D motion is obviously zero because no 3D motion

is present; however, the change in illumination induces optical ow, and therefore

apparent motion. Further, moving objects or regions must contain suÆcient texture

to generate optical ow, because the luminance in the interior of moving regions

with uniform intensity remains constant. Besides these diÆculties, motion estimation

algorithms have to solve so-called aperture problem (Fig.2.10). Thus, additional

assumptions are necessary to obtain a unique solution. Usually some smoothness

constraints on the optical ow �eld are imposed to achieve continuity. Sample motion

vectors obtained by optical ow is presented in Fig.2.9.

The computation of the optical ow as well as the interpretation of the mo-

tion and structure from optic ow requires the evaluation of �rst and second partial

derivatives of image brightness values and also of the optic ow. Real images are,

in general, noisy. The evaluation of the derivatives is a noise enhancing operation.

The higher the order, the more sensitive to noise is the derivative. Hence, even in

cases where closed-form solutions for the 3D structure and motion exist, the opti-
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Figure 2.10: Aperture problem: which is the corresponding block?

cal ow techniques do not produce usable results because of the sensitivity to noise.

Also, there are discontinuities in the optical ow due to occlusion, and these regions

must be detected reliably otherwise violations of the continuity assumptions will have

adverse and global e�ects on the estimate of the optical ow.

In contrast to the method of global minimization, another approach depends

upon solving a set of constraints in a small neighborhood. However, the local and

global methods rely on similar assumptions of smoothness of optical ow �eld. The

common weakness of both method is the inaccurate estimates at the points where

the ow changes sharply or discontinuous. The global method propagates the errors

across the entire image, while the neighborhood size limits the propagation in local

methods. Kearney et. al [62] identify three main sources of error: i) Poor estimation

of brightness gradients in highly textured image regions. The problem is especially

severe for temporal gradients in moving regions. ii) Variations in optical ow across

the image violates assumptions of locally constant ow. Signi�cant error arises at

discontinuities in the ow �eld. iii) InsuÆcient local variation in the orientation of

the brightness gradient which causes error propagation in the ill conditioned system.
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2.2.4 Nonparametric and Parametric Motion Models

Two ways of describing motion �elds are possible. In the nonparametric rep-

resentation, a dense �eld is estimated where each pixel is assigned a correspondence

or ow vector. Nonparametric dense �eld representation is generally not suitable for

segmentation because an object moving in the 3D space generates spatially varying

2D motion �eld even within the same regions, except for the simple case of pure trans-

lation. That is the reason why parametric models are commonly used in segmentation

algorithms. However, dense �eld estimation is often the �rst step in calculating the

model parameters. Parametric models require a segmentation of the scene, which is

our ultimate goal, and describe the motion of each region by a set of a few parame-

ters. The motion vectors can then be synthesized from these model parameters. A

parametric representation is more compact than a dense �eld description and less

sensitive to noise, because many pixels are treated jointly to estimate a few param-

eters. In order to derive a model or transformation that describes the motion of

pixels between successive frames, assumptions on the scene and objects have to be

made. Parametric models describe each regions by one set of parameter that is either

estimated by �tting a model in the least squares sense to a dense motion �eld ob-

tained by a nonparametric method or directly from the image. Although parametric

representations are less noise sensitive, they still su�er from the intrinsic problem of

motion estimation. It should be noticed that one has to be careful when interpreting

an estimated ow �eld. Most likely, it is necessary to include additional information

such as color to accurately and reliably detect boundaries of moving objects.

2.3 Spatio-Temporal Segmentation

Using motion attributes of video sequence for segmentation has been a very

challenging research problem, and many algorithms are proposed in the literature [42],

[43], [67], [129]. A classical approach to motion segmentation is to estimate a dense
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�eld followed by a clustering of pixels into regions of coherent motion [2]-[27]. Many

approaches use optical ow methods [58] to estimate motion vectors. Using motion

information for segmentation is a good idea that exploits the underlying nature of

the video data, but there are two major drawbacks to this approach. The optical ow

method does not cope well with large motion. Besides, regions of coherent motion

may contain multiple objects and need further segmentation for object extraction.

To overcome these drawbacks, it is important to incorporate spatial information into

motion segmentation. One feasible approach is to spatially segment the �rst frame to

obtain initial segmentation results, and then motion segment subsequent frames using

aÆne region matching. However, the new objects entering the scene and the propa-

gation error due to aÆne region matching must be handled. AÆne region matching

employs a coordinate transformation such that it corresponds to the orthographic

projection of a 3D rigid motion of a planar surface. By using 6 transformation pa-

rameters a1; ::; a6

x0 = a1x+ a2y + a3 (2.12)

y0 = a4x+ a5y + a6 (2.13)

(2.14)

a triangular region is transformed to another triangular region, and a square is

mapped to a parallelogram. Similar to the block-matching, the di�erence score is

computed between the original region and its transformed correspondence.

2.3.1 Change Detection Mask

Several methods employ a change detection mask (CDM) instead of a motion

�eld. Although easy to compute, this approach has two drawbacks. First, unless

moving objects contain suÆcient texture, only occlusion areas will be marked as

changed, while the interior of objects will be unchanged. Second, objects or parts

of objects that stop moving for a certain period of time will be lost, which is not
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acceptable in content-based applications. To prevent this, a memory would have

to be incorporated. Unfortunately, this would cause background that is becoming

uncovered to remain classi�ed as an object for the length of the memory, and the

resulting video object planes would be larger than the actual objects, depending on

the speed of movement and length of memory.

Automatic segmentation is formulated by Neri et al. [93] as the problem of

separating moving objects from a static background. In a preliminary stage, potential

foreground regions are detected by applying a higher order statistics test to a group of

inter-frame di�erences. The nonzero values in the di�erence frames are either due to

noise or moving objects, with the noise being assumed to be a Gaussian in contrast to

the moving objects, which are highly structured. In the case of moving background,

the frames must �rst be aligned by motion compensation. For all di�erence frames,

the zero-lag fourth-order moments are calculated because of their capability to sup-

press Gaussian noise. These moments are then thresholded, resulting in a preliminary

segmentation map containing moving objects and uncovered background. To identify

uncovered background, the motion analysis stage calculates the displacement of pixels

that are marked as changed. If the displacement of a pixel is zero for all lags, it is

classi�ed as background and as foreground otherwise. Finally, morphological opening

and closing operators are applied to achieve spatial continuity and to remove small

holes inside moving objects of the segmentation map. The resulting segmented fore-

ground objects are slightly too large, because the boundary location is not directly

determined from the gray level or edge image.

Mech and Wollborn [80] generate a video object plane from an estimated

change detection mask. Initially, a change detection mask is generated by taking

the di�erence between two successive frames using a global threshold. It is then

re�ned in an iterative relaxation that uses locally adaptive threshold to enforce spatial

continuity. Temporal stability is increased by incorporating a memory such that each

pixel is labeled as changed if it belonged to an object at lest once in the last change
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detection masks. The simpli�cation step includes a morphological close and removes

small regions to obtain the �nal CDM. The object mask is calculated from the CDM

by eliminating uncovered background and adapting to gray-level edges to improve the

location of boundaries.

Nevertheless, change detection masks are sometimes more useful than motion

�elds. For example, in head-and-shoulder sequences, there is only little movement of

the person, and the occlusion regions are very small. Thus, a relatively long memory

can be attached without getting video object planes that are signi�cantly larger than

the object. Estimating a motion �eld would be more diÆcult because the motion is

simply too small.

2.3.2 Stochastic Approaches

The Bayesian framework provides an elegant formalism and is among the pop-

ular approaches to motion segmentation [90, 113]. The key idea is to �nd the max-

imum a posteriori estimate of the segmentation for some given observation which is

the video sequence.

Murray and Buxton [90] used an estimated ow �eld as observation. As it

is common, the segmentation or priori model is assumed to be a sample of Markov

random �eld (MRF) to enforce continuity of the segmentation labels, and thus, prob-

ability density function of segmentation is a Gibbs distribution [13]. The energy

function of the MRF consists of a spatial smoothness term, a temporal continuity

term, and a line �eld as in [51] to allow for motion discontinuities. To de�ne the

observation model, the parameters of a quadratic ow model [2] are calculated for

each region by linear regression. The mismatch between this synthesized ow and the

ow �eld given as observation is assumed to be zero-mean white Gaussian noise. The

resulting probability function is maximized by simulated annealing [51]. Major draw-

backs of this proposal are the computational complexity and the number of objects

likely to be found has to be speci�ed. A similar approach was taken by Bouthemy and
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Francois [18]. Their observation function contains the temporal and spatial gradients

of the intensity function, which is essentially the same information as the optical ow.

For each region, the aÆne motion parameters are computed in the least-squares sense.

The optimization is performed by iterated conditional modes [13], which is faster than

simulated annealing, but likely to get trapped into a local minimum. The techniques

[2]-[18] include only optical ow data into the segmentation decision, and hence, their

performance is limited by the accuracy of the estimated ow �eld. This means that

they inevitably su�er from the problems such as noise sensitivity and inaccuracy at

motion and therefore object boundaries.

It is possible to treat motion estimation and segmentation jointly in the

Bayesian framework [26, 113]. In this case, the observation function consists only

of the gray-level intensity, and both the segmentation and the motion �eld have to

be estimated. Chang et al. [26] used both a parametric and a dense correspondence

�eld representation of the motion, with the parameters of the eight-parameter model

being obtained in the least squares sense from the dense �eld. The objective function

resulting from the MAP criterion consists of three terms, each derived from an MRF.

Since the number of unknowns is three times higher when the motion �eld has to be

estimated as well, the computational complexity is signi�cantly larger. The technique

proposed by Stiller in [112] and extended in [113] is similar, but no parametric mo-

tion �eld representation is necessary. In [112], the objective function consists of two

terms. The displaced frame di�erence generated by the dense motion �eld is modeled

by a zero-mean generalized Gaussian distribution, and an MRF ensures segment-wise

smoothness of the motion �eld and spatial continuity of the segmentation. Although

ICM is used to obtain the MAP estimate, the computational burden of this algorithm

is enormous. A classi�cation based approach was proposed for jointly segmenting

moving objects and their corresponding optical ow by Bors [17]. The classi�cation

of regions is done accordingly to the Bayesian theory, which is used to express the

probabilities from one frame with respect to the previous frames such that the con-
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ditional probability of the estimated vectors in all of the frames of the sequence is

blended into three conditional probability term. The �rst probability is associated

with the reconstruction of a frame based on the previous frames and their correspon-

dent feature vectors. The components of the second term represents the dependency

of a feature vector on the values of the same future vector in the previous frames.

The third probability models the moving object characteristics evaluated in the �rst

frames. The median radial basis function network is then employed for modeling the

moving object characteristics. The initial segmentation and assignment of regions

into objects are main drawbacks of this approach.

Techniques that make use of Bayesian inference and model images by Markov

random �elds can easily incorporate mechanisms to achieve spatial and temporal

continuity. On the other hand, these approaches su�er from high computational

complexity, and many algorithms need the number of objects or regions in the scene

as an input parameter.

2.3.3 Morphological Approaches

Morphological tools such as watershed algorithm and simpli�cation �lters are

becoming increasingly popular for segmentation [86, 78]. An introduction, discus-

sion of potential problems, and several applications to segmentation are presented

by Meyer and Beucher [86]. Salembier and Pardas [105] described a segmentation

algorithm that has a typical structure for morphological approaches. In a �rst step,

the image is simpli�ed by the morphological �lter \open-close by reconstruction" to

remove small dark and bright patches. An attractive property of these �lters is that

they do not blur or change contours like low-pass or median �lters. The following

marker extraction step detects the presence of homogeneous areas, for example by

identifying large regions of constant color or luminance. This step often contains most

of the knowhow of the algorithm. Each extracted marker is then the seed for a region

in the decision step, the so-called watershed algorithm, which is a technique similar to
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region growing. A quality estimation is performed in [105] as a last step to determine

which regions require resegmentation. The proposed segmentation by Salembier et

al. in [104] is very similar, but an additional projection step is incorporated that

warps the previous partition onto the current frame. This projection, which is also

computed by the watershed algorithm, ensures temporal continuity and linking of the

segmentation.

Another morphological video segmentation algorithm was proposed by Choi

et al. [30]. Their marker extraction step detects areas that are not only homogeneous

in luminance, but also in motion, so-called joint markers. For that, intensity markers

are extracted as in [105], and aÆne motion parameters are calculated for each marker

by linear regression from a dense ow �eld. It starts with a global motion estimation

and compensation step. The thresholded morphological gradient image, which is

also called as morphological edge, serves as input for the watershed algorithm that

detects the location of the object boundaries. Every region for which more than

half of its pixels are marked as changed in a change detection mask is assigned to the

foreground. After that, the segmentation is simpli�ed by merging regions with similar

aÆne motions. In a last stage, the frame is simpli�ed with a morphological open-

close by reconstruction �lter. A drawback of this technique is the lack of temporal

correspondence to enforce continuity in time.

A double-partition approach based on morphology was suggested by Marques

and Molina [78]. Initially, objects of interest have to be selected interactively, leading

to partition at object level that corresponds to a decomposition into video object

planes. These objects are normally not homogeneous in color or motion and are

resegmented to obtain a �ne partition that is spatially homogeneous. After estimating

a dense motion �eld by block matching, the �ne partition is projected onto the next

frame using motion compensation. These projected regions are used to extract the

markers for the next frame, which is then segmented by the watershed algorithm

based on luminance. To improve the temporal stability, the segmentation process is
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guided by a change detection mask that prevents markers of static areas to overgrow

moving areas and vice versa. Finally, the new object level partition is computed from

the projected and segmented �ne partition.

Morphological segmentation techniques are computationally eÆcient, and there

is no need to specify the number of objects as with some Bayesian approaches, because

this is determined automatically by the marker of feature extraction step. However,

due to its nature, the watershed algorithm su�ers from the problems associated with

region-growing techniques.

2.3.4 Hybrid Approaches

In his early work, Adiv [2] proposed a hierarchically structured two-stage algo-

rithm. The ow �eld is �rst segmented into connected components using the Hough

transform such that the motion of each component can be modeled by an aÆne

transformation. Adjacent components are then merged into segments if they obey

the same eight-parameter quadratic motion model. In the second stage, neighboring

segments are consistent with the same 3D motion are combined, resulting in the �nal

segmentation.

Hierarchically structured segmentation algorithms were proposed by Hotter

and Thoma [59], Musmann at al. [91], and Diehl [41]. A change detector divides the

current frame into changed and unchanged regions, and each connected changed re-

gion is assumed to correspond one object. Starting from the largest changed region the

motion parameters for this object are estimated directly from the image intensity and

gradient. If the prediction error after motion compensation is too large, this object

is further subdivided and analyzed in subsequent levels of hierarchy. The algorithm

sequentially re�nes the segmentation and motion estimation until all changed regions

are accurately compensated. Because these techniques alternate between analyzing

the image and synthesizing, they have been described as object-oriented analysis-

synthesis algorithms. In [59] and [91], the eight parameter motion model is used, and
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the parameters are obtained by a direct method. A 12-parameter quadratic motion

model that describes a parabolic surface undergoing the 3D motion under parallel

projection is proposed in [41]. An iterative technique that is similar to the Newton-

Raphson algorithm estimates the parameters by minimizing the MSE between the

motion-compensated and the current frame. Edge information is incorporated into

the segmentation algorithm to improve the accuracy of boundaries.

Wang and Adelson [128] proposed a layered representation of image sequences.

The current frame is segmented based on motion with each layer being modeled by

an aÆne transformation. The algorithm starts by estimating the optical ow �eld,

and then subdivides the frame into square blocks. The aÆne motion parameters

are computed for each block. The pixels are then regrouped by adaptive k-means

clustering algorithm. A pixel is assigned to a layer if the di�erence between the optical

ow at that pixel and the ow vector synthesized from the aÆne parameters of that

layer is smaller than for any other hypothesis. The frames are warped according to

the aÆne motion of the layers such that coherently moving objects are aligned. A

temporal median �lter is then applied to obtain a single representative image for

each object. This proposal has several disadvantages. To construct the layers, the

information of a longer sequence is necessary. If in a sequence di�erent views of the

same object are shown, it is not possible to represent that object by a single image

that is warped from frame to frame. Further, the aÆne transformation might not be

able to describe the motion of a complete layer in the presence of strongly nonrigid

motion. The algorithm also depends completely on the accuracy of the optical ow

estimates since no color or intensity information is used.

Meier and Ngan [83] extend the techniques proposed in [82] to scenes with

a moving camera or background. After a binary model for the object of interest

has been derived from the edge image, an object tracker matches the model against

subsequent frames in the sequence using the Hausdor� distance and updates the model

every frame to accommodate for rotation and changes in shape of the object. The
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proposed algorithm is improved by a �ltering technique that removes the stationary

background. The output of the tracker is a sequence of binary models that will

guide the extraction of VOP's. The location of the object boundaries is determined

based on the binary model, which in turn is derived from the edge image. Although

matching the binary model using Hausdor� distance is remarkably robust, the most

diÆcult task is to distinguish between background and objects in the initialization

and update stage.

Qui [100] fuses information from color image segmentation, motion segmenta-

tion and active contour to achieve accurate extraction of moving objects. They em-

ploy the sequential labeling algorithm based on using reectance ratio as a measure

of similarity of two neighboring pixels. A dense motion �eld by using non-parametric

approach that uses local ordering of intensities which is called as census transform. Its

main idea is to �rst apply an ordering-based local transform to the image, and then

to use correlation. The disparity values are assigned as the most popular disparity

of boundary pixels of the portions found by color segmentation. Finally a mask is

derived for each object.

Layered representation of regions to construct motion consistent objects is ad-

dressed by Siggelkow et al. [108]. In order to achieve a segmentation conformable

to subjective image partition, a hierarchical merging of regions is done. The �rst

layer corresponds the regions detected by inter-frame segmentation based color clus-

tering and translational region matching. In the second layer, regions of the �rst

layer are merged with respect to similar chrominance and motion. The highest layer

represents a semantic segmentation, where regions of the second layer are merged in

case of similar motion. However, using only translational motion model degrades the

performance of tracking and signi�cantly lowers the success of correct merges in the

layered representation stage.

Torres et al [119] used a motion segmentation algorithm. They partitioned

the image into rectangular regions and computed aÆne motion parameters for each
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region. These motion parameters are clustered using k-means algorithm to form

homogeneous regions with similar motion parameters. Dufaux et al [43] used spa-

tiotemporal segmentation algorithm based on luminance information and motion pa-

rameters. The luminance is �ltered by morphological operator, and then clustered

using k-means algorithm. At the end, regions with similar motions are merged using

k-means clustering. Moscheni et al [89] used the spatiotemporal similarity as their

merging criterion. Their spatial similarity is obtained from the test statistic of the

gradient value along the boundary of the regions. Their temporal similarity is derived

from test statistic of the residual distribution and motion parameters.

The algorithms described so far mainly focused on segmenting video sequences

into regions that are homogeneous with respect to motion and possibly color or lumi-

nance. For content-based functionalities, it is desirable to partition the frames into

objects that are semantically meaningful to the human observer. Thus, the above

techniques will fail in many practical situations where objects do not correspond to

partitions based on features like motion or color.

2.4 Object Tracking

A tracking process can be interpreted as the process of search for a target

within the reduced scope. This process is usually embodied through model match-

ing. Three main approaches have been developed to track objects depending on their

type; whether they are rigid, nonrigid, or have no regular shape. For the two �rst ap-

proaches the goal of the tracking process is to compute carefully the correspondences

between objects already tracked and the newly detected moving regions, whereas

the goal of the last approach is handling the situations where correspondences are

ambiguous.

The major diÆculty in a tracking problem is to deal with the inter-frame

changes of moving objects. It is clear that the image shape of a moving object may
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Figure 2.11: Cars are found, modeled and tracked using models .

undergo deformation, since a new aspect of the object may become visible or an actual

shape of an object may change. Thus a model needs to evolve from one time frame

to the next, capturing the changes in the image shape of an object as it moves.

2.4.1 Object Models for Tracking

When objects are rigid, like manufactured objects, the tracking process can

take advantage of accurate knowledge on their shape as illustrated in Fig.2.11. A

�rst method consists of detecting particular primitives, such as corners and edges,

and in tracking these primitives from one image to another [126]. This method can

be used only with objects owning numerous primitives easy to detect, like vehicles.

Another method computes the correspondences between a 3D model of mobile objects

and the 2D moving regions corresponding to their perception [69]. For example, the

center of the moving region and the direction of its motion are computed, then the

correspondences between the line segments of the 3D model and the edges detected

inside the region are established. This method is more reliable when the 3D model is

accurate.



54

When objects are nonrigid, like humans, no accurate model of their shape is

available. Instead, dynamic templates of the perception of object motion are used.

These templates that we call models are regularly updated during the tracking process

to compensate the evolution of the object perception. Three types of dynamic model

can be used.

The �rst type of model corresponds to the parameterized shape of the mobile

objects. These models can be applied to rigid or nonrigid objects. For example in [87],

polygons are used to represent the outline of vehicles. For similar applications in [10]

the authors use cubic B-splines instead of polygons. In both cases these models have

been successfully applied to track rigid objects. In [11], the authors extend the method

to nonrigid objects. Their model is made of cubic B-splines but it also contains the

authorized deformations that correspond to the outline of a walking pedestrian. By

this way the outline of tracked objects can be distorted only in certain directions

making the tracking process more reliable. The second type of model contains a

template of the moving region corresponding to the detection of the object motion.

This template is de�ned by the color distribution of the pixels belonging to the moving

region. For example in [31], the authors use a color histogram and thanks to it they

are able to track in the same time several football players and to cope with dynamic

occlusions in certain situations. In [9], each pixel of the template is associated to

the temporal color distribution of the intensity function resulting in a more robust

tracking. The third type of model is also made of a template of the moving region.

However this template is de�ned by the set of edges detected in the moving region.

In [60], the authors use this template and de�ne a distance between two sets of edges

to allow them to compare parts of templates.

When no a priori model of objects is available, the tracking process can only use

the coordinates of object locations to compute the correspondences between already

tracked objects and newly detected ones. As ambiguous correspondences may arise,

several methods have been proposed to solve these ambiguities. For example the
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method of multiple hypothesis tracking (MHT) generates hypotheses to perform all

possible combinations of correspondences. These hypotheses de�ne di�erent worlds

where the correspondences are coherent. When a hypothesis becomes incoherent, the

associate correspondences are discarded. To avoid a combinatorial explosion, only a

few levels of hypotheses are computed in real-world applications. In [36], the authors

propose an eÆcient implementation of MHT. The beam search method also proposes

a mechanism to handle ambiguities [134]. It duplicates all the ambiguous tracked

objects and makes the correspondences with the newly detected objects. Then this

method consists of tracking all these objects and veri�es whether or not they are

coherent at every new frame arrival. If their tracking is coherent, the correspondences

relative to these objects are considered as the true ones. These methods are two

examples of tracking methods that can be applied to any kind of objects. Since they do

not use a priori knowledge on objects, they cannot compute accurate correspondences

and may lead to tracking errors.

2.4.2 Tracking Techniques

In [55], Heisele proposes a cluster based tracking method that for each image

clusters of the previous image are adapted iteratively by a parallel k-means clustering

algorithm. Instead of tracking single points, edges, or areas over a sequence of images,

only the centroids of the clusters are tracked. For the very �rst image a set of

prototypes is determined by the divisive clustering. For each following image the

prototypes of the preceding image serve as seeds for the parallel k-means clustering.

This clustering provides a new set of prototypes for the next image.

A model based tracking system is developed by Jang et al. [65]. After the

initialization is done manually, the least enclosing rectangle of the target is found,

and partitioned into cells that are classi�ed later as boundary and internal cells. The

selected cells become nodes of a model graph, and they are linked to the neighboring

nodes. A feature vector composed of color, Gabor based wavelet coeÆcients, geomet-
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ric disposition of the node, and edges is assigned to each node. An energy function

similar to Snake model interprets matching process as an energy minimization pro-

cess. Tracking is decomposed in two steps: 1) estimating a possible area of a target

at the current time frame by a Kalman �lter that predicts motion parameters, and

2) updating a model of target through energy minimization. The new model is con-

structed by associating feature values of the found cells with nodes of a graph. A

drawback of this approach is that new model is isomorphic to old one in terms of the

number of nodes and the linkage among nodes.

Another region tracking algorithm heavily depends on color correspondence

was proposed by Deng [39]. In his approach, color is assumed to be the most dominant

visual feature, and it is used to rank a distance measure. Other features are only used

as constraints to eliminate false matches, and this is achieved by the use of thresholds.

In other words, the goal is to �nd the most similar region in color that is also close

in texture, size, and location.

For every region in the next frame, the size and texture di�erences of current

region are compared with the preset thresholds for di�erences in size and texture.

If both values are less than the thresholds, the region is considered as a candidate

for color rank ordering. AÆne motion compensation is estimated to predict the

approximate location of the current region in the next frame.

The distance between the location of a candidate region and the predicted

location of the current region is calculated. The distance has to be less than an image

size-dependent threshold, for the region to remain in candidacy. The color feature

distance between a candidate region and the current region is weighted such that, the

further away a candidate region, the less likely that it will be the true match. The

particular weighting by location di�erence is needed because there might be some

objects nearby with similar color, texture, and size. The weighted color distance is

checked against a threshold to validate candidacy. The candidate regions are ranked

in terms of their color distances. The region having the minimum value is determined
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to be the match for the current region. If a match satisfying all of the above conditions

cannot be found, the current region is determined to have no match in the next frame.

Some obvious drawbacks of this method are its dependency to initial segmentation

as well as intra-frame spatial segmentation, and determination of optimum threshold

values.

A semiautomatic object tracking algorithm that depends user assistance to

obtain the initial object-segmented frame of the sequence was presented by Gu [52].

His method starts by asking user to mark up the boundary of the object to be tracked.

Then the pixels along a certain neighborhood of this initial boundary are classi�ed as

object or background with respect to their distance to cluster centers by using either

distance or morphological watershed algorithm. Unfortunately, it is not explained

how to derive these cluster centers. After the initial user depended segmentation,

the algorithm calculates global perspective motion parameters between the current

and next frame, updates the boundary of the detected object by the same operators

used for the initial boundary adjustment. The need for assistance, the inability to

handle multiple objects, and the motion dependent nature of region estimation for

the consecutive frames make this scheme unsuitable for ordinary video sequences.

Bremond [20] presents a method to track multiple non-rigid objects in video se-

quences. To handle the particularities of nonrigid objects, he proposes an appearance-

based approach for the tracking method. He de�nes the target model thanks to the

height and width of the bounding box surrounding the moving regions associated to

the target. The height and width are average values regularly updated during the

process. Five generic points are de�ned as the middle of the sides of the bounding

box and as its center. They are tracked separately and the point that best matches

the newly detected moving region de�nes the track of the global object. The track-

ing of moving regions is performed in a prediction-matching-update loop. To allow

changes he supposes that the motion of a target is piece-wise linear and he represents

its trajectory by a polygonal approximation. Short segments of line for the trajectory
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are computed by considering that the speed of the target is constant on segments.

So the trajectory gathers an approximation of all past locations of the target. The

new location of a target is computed during the matching process between the target

and a moving region detected in the current frame. Then, every estimated location is

matched with the location of the corresponding generic point of the moving region.

The target generic point with the best match is chosen to compute the location of

the target center. The matching process compares the predicted location of targets

with the location of newly detected moving regions through the use of an ambiguity

matrix. The ambiguity matrix gives the number of moving regions that are close

to the predicted location of each target. The matrix elements measure the distance

between targets and moving regions. The task of the matching process is to solve the

correspondences of the ambiguous targets. This paper presents a tracking method

that gathers several characteristics. The method is based on the tracking of the ap-

pearance of scene objects instead of their real structure. This approach allows us

to handle several cases of partial static occlusion. In particular, it helps in tracking

scene objects even if they are partially detected. It uses elementary dynamic models

of targets that need no a priori knowledge on scene objects, and allows user to solve

several cases of ambiguous correspondences. The method systematically uses two

other types of information: contextual information and information computed by the

scenario recognition module.

2.5 Segmentation in Compressed Domain

Performing analysis in the compressed domain reduces the amount of e�ort

involved in decompression. MPEG coding standards convert the bitstream in terms of

I, B, and P-frame. The B and P frames store the motion information and residues af-

ter motion compensation. The I-frame stores DCT information of the original frame.

Though I-frame provides no motion information, still color and texture information
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can be grasped and propagated to the B, P frames by inverse motion compensation.

Compressed-domain video possesses several important characteristics attractive for

object analysis. First, motion information is readily available without incurring cost

of estimation of motion �eld. Second, DCT forms relay information on image char-

acteristics. On the other hand, the motion vectors are often contaminated with mis-

matching and quantization errors. Comparably, motion processing in uncompressed

image-sequence domain is better suited for accuracy and precision. On top of that,

the motion �elds in MPEG streams are quite prone to quantization errors.

Only few researchers have proposed the segmentation algorithms in compressed

domain. De Queiroz [38] segmented JPEG documents into speci�c regions such as

those containing halftones, text, and continuous-tone pictures using the encoding cost

map based segmentation. Wang [127] proposed a fast algorithm to automatically de-

tect faces in MPEG compressed video. He used skin-tone statistics, shape constraints,

and energy distribution of the luminance DCT coeÆcients to detect and locate the

face position.

In a related work in compressed domain, Meng and Chang [84] employ a

block count method to estimate parameters in a three-parameter aÆne global motion

model. Then they perform global motion compensation to get object mask and

perform histogram clustering to deal with multiple objects.

Sukmarg [114] propose a fast algorithm to detect and segment objects in

MPEG compressed video. His segmentation algorithm consists of four main stages,

initial segmentation using sequential leader and adaptive k-means clustering, region

merging based on spatiotemporal similarities, foreground-background classi�cation,

and object detail extraction. The initial segmented regions are generated from 3D

spatial information based on DC image and AC energy information that is used to

cluster the image using sequential leader clustering. After clusters are obtained, adap-

tive k-means is applied until no more changes occur in each cluster. The resulting

sequences contain gradient estimates along their associated dimensions. The temporal
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similarity is derived based on the hypothesis test of the distribution of the tempo-

ral gradient. This hypothesis test is the Kolmogorov-Smirnov test, which measures

the overall di�erence between two cumulative distribution functions [6]. The spa-

tiotemporal similarities are calculated and used to create a similarity graph between

regions. This graph is thresholded and clustered. First clustering stage is used to

merge regions, which form cycles in graph. The second clustering stage is used to

merge regions based on the number of graph edges connecting between an interested

cluster and its neighbor cluster, and those connecting within the interested cluster

itself.

2.6 Scene-Cut Detection

An essential step involved in video segmentation is partitioning videos into

short sequences called shots. A shot is a sequence of images that is consistent in terms

of object content. Shots have been identi�ed as the fundamental unit of video and

their detection is the foremost task of scene segmentation. Once shots are extracted

it is possible to analyze their content based on motion, color, texture and others

features.

The shot boundary detection techniques may be data driven or model driven.

The model driven approach is essentially based on mathematical models. The data

driven methods for detecting shot boundary essentially fall into two classes: those

based on global features without any spatial information, i.e. color histograms, and

those based on spatially registered features of the images. The former are insensitive

to motion but they can fail to detect scene cuts when the images before and after the

scene cut have similar global features. Spatially registered feature based approaches

are often too sensitive to moving objects and some false cut may be detected when

the image motion is very fast.

In [47], scene-cut detection is addressed using global representation like color
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histogram and spatially related features. Corridoni and Del Bimbo [34] proposed a

technique based on a relative di�erence between frames. They expect a scene cut

when the di�erence between two frames is much larger than the standard di�erence

between frames belonging to the same shot. The threshold value has to be set experi-

mentally. Nagasaka and Tanaka [92] applied the template matching technique and the

X2 test to the color histograms of two subsequent frames. Arman et al. [8] proposed

techniques which operate directly on compressed video to detect scene cuts by using

known properties of the coeÆcients of the DCT. The previous mentioned approaches

are essentially data driven. Recent schemes based on video content encoded in DCT

coeÆcients and motion vector information [133, 61], neural architecture [7], and re-

duced image sequences [132] have been reported in the literature. These schemes are

suÆciently accurate in segmenting the video into shots.

2.7 Data Clustering

Clustering is unsupervised classi�cation of patterns that are referenced as ob-

servations, data items, or feature vectors into groups called as clusters. Typical

pattern clustering activity involves the following steps [64]: i) pattern representation

optionally including feature extraction and selection, ii) de�nition of a pattern prox-

imity measure appropriate to the data do-main, iii) clustering or grouping, iv) data

abstraction if needed, and v) assessment of output if needed.

The most challenging step in clustering is feature extraction or pattern rep-

resentation. Pattern representation refers to the number of classes, the number of

available patterns, and the number, type, and scale of the features available to the

clustering algorithm. Some of this information may not be controllable by the prac-

titioner. Feature selection is the process of identifying the most e�ective subset of

the original features to use in clustering. Feature extraction is the use of one or more

transformations of the input features to produce new salient features. Either or both
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of these techniques can be used to obtain an appropriate set of features to use in

clustering. In small size data sets, pattern representations can be obtained based on

previous experience of the user with the problem. However, in the case of large data

sets, it is diÆcult for the user to keep track of the importance of each feature in clus-

tering. A solution is to make as many measurements on the patterns as possible and

use them in pattern representation. But it is not possible to use a large collection

of measurements directly in clustering because of computational costs. So several

feature extraction and selection approaches have been designed to obtain linear or

nonlinear combinations of these measurements which can be used to represent pat-

terns. Most of these approaches are typically iterative and cannot be used on large

data sets due to prohibitive computational costs.

The second step in clustering is similarity computation. Pattern proximity is

usually measured by a distance function de�ned on pairs of patterns. A variety of

distance measures are in use in the various communities. A simple distance mea-

sure like Euclidean distance can often be used to reect dissimilarity between two

patterns, whereas other similarity measures can be used to characterize the concep-

tual similarity between patterns. A variety of schemes have been used to compute

similarity between two patterns. They use knowledge either implicitly or explicitly.

Most of the knowledge-based clustering algorithms use explicit knowledge in simi-

larity computation. However, if patterns are not represented using proper features,

then it is not possible to get a meaningful partition irrespective of the quality and

quantity of knowledge used in similarity computation. There is no universally accept-

able scheme for computing similarity between patterns represented using a mixture of

both qualitative and quantitative features. Dissimilarity between a pair of patterns

is represented using a distance measure that may or may not be a metric.

The next step in clustering is the grouping step. There are broadly two group-

ing schemes: hierarchical and partitional schemes. The hierarchical schemes are more

versatile, and the partitional schemes are less expensive. The partitional algorithms
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aim at maximizing the squared error criterion function. Motivated by the failure of

the squared error partitional clustering algorithms in �nding the optimal solution to

this problem, a large collection of approaches have been proposed and used to obtain

the global optimal solution to this problem. However, these schemes are computa-

tionally prohibitive on large data sets. The grouping step can be performed in a

number of ways. The output clustering can be hard as a partition of the data into

groups, or fuzzy where each pattern has a variable degree of membership in each

of the output clusters. Hierarchical clustering algorithms produce a nested series of

partitions based on a criterion for merging or splitting clusters based on similarity.

Partitional clustering algorithms identify the partition that optimizes a clustering

criterion. Additional techniques for the grouping operation include probabilistic and

graph-theoretic clustering methods.

In some applications, it may be useful to have a clustering that is not a parti-

tion. This means clusters are overlapping. Fuzzy clustering and functional clustering

are ideally suited for this purpose. Also, fuzzy clustering algorithms can handle mixed

data types. However, a major problem with fuzzy clustering is that it is diÆcult to

obtain the membership values. A general approach may not work because of the sub-

jective nature of clustering. It is required to represent clusters obtained in a suitable

form to help the decision maker.

Knowledge-based clustering schemes generate intuitively appealing descrip-

tions of clusters. They can be used even when the patterns are represented using a

combination of qualitative and quantitative features, provided that knowledge link-

ing a concept and the mixed features are available. However, implementations of the

conceptual clustering schemes are computationally expensive and are not suitable for

grouping large data sets. The k-means algorithm and its neural implementation, the

Kohonen net, are most successfully used on large data sets. This is because k-means

algorithm is simple to implement and computationally attractive because of its linear

time complexity. However, it is not feasible to use even this linear time algorithm on
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large data sets. Incremental algorithms like leader and its neural implementation can

be used to cluster large data sets. But they tend to be order-dependent. Divide and

conquer is a heuristic that has been rightly exploited by computer algorithm designers

to reduce computational costs. However, it should be judiciously used in clustering

to achieve meaningful results.

2.8 Summary

This chapter discussed several aspects of segmentation from image segmenta-

tion to data clustering. Speci�cally, we focused on region-based and motion estimation

methods, and also explored the problem of object tracking.

With regard to region segmentation, we presented common histogram thresh-

olding and clustering approaches. Although histogram based segmentation is invari-

ant to additive intensity variation, it has no explicit notion of connectivity. It depends

an implicit assumption that pixels with similar intensities belong to the same regions,

while this may not true in general. Besides, the result of clustering is seriously a�ected

by the initial values at the beginning of clustering.

Edge-based approaches utilize the nearest neighbor algorithm or treat seg-

mentation as an estimation problem. Although these techniques work well in some

situations where the input data set is relatively simple, clean, and �ts the model well,

they lack generality and robustness. Color-based split-and-merge, pyramid linking,

and morphological methods provide better performance than edge methods, however

the main problem arises from the fact that a video object can contain totally di�erent

colors.

On the other hand, works in the motion oriented segmentation domain start

with an assumption that a semantic video object has homogeneous motion. Most

motion based methods are based on optical ow estimation or unreliable initial seg-

mentation. As a result, they may su�er from the inaccuracy of motion boundaries.
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This class of methods will also fail when a semantic video object have di�erent mo-

tions in di�erent parts of the object. Computational complexity is another main

concern.

The major diÆculty in object tracking is to deal with the inter-frame changes

of moving objects. It is clear that the image shape of a moving object may undergo

deformation, since a new aspect of the object may become visible or an actual shape

of an object may change. Thus a model needs to evolve from one time frame to the

next, capturing the changes in the image shape of an object as it moves.

In summary, a single homogeneous color or motion criterion does not lead

to satisfactory extraction because each homogeneous criterion can only deal with a

limited set of scenarios. A semantic video object may contain multiple colors and

multiple motions. Therefore, any single criterion could only lead to a partial solution

for semantic visual information extraction.
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Chapter 3

Preprocessing of Color Digital Video for

Segmentation

Knowledge should mean a full grasp of knowledge
Knowledge means to know your heart and soul
If you have failed to understand yourself
Then all of your reading has missed its call.

What is the purpose of reading those books?
So that man can know the All-Powerful
If you have read, but failed to understand
Then your e�orts are just a barren toil..

Yunus Emre

Preprocessing prepares an input video sequence for the following object seg-

mentation stage by �ltering the video frames. In this chapter, statistical and struc-

tural attributes of a video sequence are evaluated, and several color spaces, noise

removal �lters, simpli�cation �lters, change detection masks, etc., are discussed.

The most common video attributes can be counted as color values, texture

scores, edge properties, and frame di�erences. A 3D spatiotemporal data structure

that will serve as a basis in the segmentation framework is constructed from the

video sequence using its attributes. To determine a suitable color space, the e�ects

of several color spaces on the performance of region growing based segmentation are
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evaluated. Out of several di�erences, sensitivity to illumination changes and having

computationally simple distance metric are two main considerations.

For an automatic segmentation framework, �ltering has great importance on

the quality of the �nal segmentation results. Video sequences acquired through sen-

sors may be contaminated by a variety of noise sources associated with electro-optical

devices and detection processes. By noise it is often referred to stochastic variations

as opposed to deterministic distortions such as shading or lack of focus. Some dis-

tortions are inherited to camera lens system as in the wide-angle �eld lenses, others

are related to shooting conditions, i.e. camera shake, jitter, ickers, sparks. In that

sense, noise removal is a prerequisite for most segmentation algorithms.

Similar to the noise, certain spatial texture is undesirable in segmentation since

it induces over-partitioning and increases computational load. For instance, an object

having chess-like pattern may be segmented into multiple smaller partitions if a color

homogeneity criterion is applied. An image simpli�cation or reconstruction method

that preserves the object boundaries would solve excessive segmentation problem. In

this chapter, various noise removal �lters are presented and compared. Two novel

methods that employ robust estimators and regressive band-suppression �lters are

introduced. The �ltering performances of these methods are analyzed.

Frame di�erence is implemented as a change detection mask that detects mov-

ing pixels between two consecutive frames. A dual window based change detection

mask extraction is explained.

3.1 Analysis of Suitable Attributes

Color is important to living creatures, not only because it beauti�es our world

but also gives more information about our surroundings as well. To each distinct

color, there is a corresponding wavelength in the electro-magnetic spectrum of visible

light. A range of colors, which is called as color gamut, is obtained by taking three
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Figure 3.1: Gamuts of the RGB and CMY color spaces within the visible gamut.

arbitrary colors from the spectrum as illustrated in Fig.3.1. The colors themselves

are called as primary colors.

One of the most inuential color modeling systems was devised by A. Munsell.

He identi�ed colors in terms of three attributes: hue, value and chrominance as shown

in Fig.3.2. Hue is de�ned as the dominant wavelength of the color. Hue is the attribute

of a color by which we distinguish red from green, blue from yellow, etc. There is a

natural order of hue: red, yellow, green, blue, purple. One can mix paints of adjacent

colors in this series and obtain a continuous variation from one color to the other. For

example, red and yellow may be mixed in any proportion to obtain all the hue range

from red through orange to yellow. Chrominance is the degree of departure of a color

from the neutral color of the same value. Colors of low chrominance are sometimes

called weak, while those of high chrominance are said to be highly saturated, strong

or vivid. Chrominance can be viewed as the distance from the white; it is a measure

of how pure the color is. In other words, the amount of white a hue is mixed with

that represents the vividness of the color. Value corresponds to the shading of the

color. In other words, it is related to the emitted energy of a color. The higher the

emitted energy, the brighter the color appears. Value was de�ned by Munsell as \the
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Figure 3.2: Munsell color space and its hue diagram.

quality by which we distinguish a light color from a dark one." Value is a neutral

axis that refers to the grey level of the color.

3.1.1 Color Spaces

Color space is a model for representing color attributes of image pixels numer-

ically in terms of primary colors. No color system can be considered as universal,

because perception can be interpreted and modeled in di�erent ways. Each color

system has its own color features, which are the parameters of a color system. In any

problem involving color quanti�cation, the �rst step toward the solution is to de�ne

the color space. There exist several color spaces used for the description of color

attributes. An international standard of primary colors was established in 1931 by

the Commision Internationale de l'Eclairage (CIE). The chosen standard primaries

colors are not real but imaginary colors, because they are too saturated to be seen

by a human eye or produced. The advantage, however, is that those primary colors

can describe each perceived color mathematically.
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Figure 3.3: The RGB color space and additive property.

RGB Space

By de�ning three primary colors as 700nm for red, 546.1nm for blue, and

435.8nm for green, RGB color space is established. The RGB is an additive color

model that is used for video screens, it has machine oriented chromatics rather than

human oriented chromatics. One other major disadvantage of the RGB space is the

dependency of all three parameters from the light intensity. Thus, it is sensitive to

intensity changes, shadows and irregular illumination. The RGB gamut is smaller,

hence certain visible colors (e.g. pure yellow, pure cyan) cannot be seen on monitors.

CMY Space

CMY (cyan, magenta, yellow) is a subtractive model that is used often for

printers. Just as the primary colors of CMY are the secondary colors of RGB, the

primary colors of RGB are the secondary colors of CMY . But the colors created
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Figure 3.4: The CMY color space and subtractive model.

by the subtractive model of CMY don't look exactly like the colors created in the

additive model of RGB. Particularly, CMY cannot reproduce the brightness of RGB

colors. 2666664
C

M

Y

3777775 = 1�

2666664
R

G

B

3777775 (3.1)

XY Z Space

The XY Z color space de�nes virtual primary colors X, Y , and Z, which

are the wavelengths that the rods and cones in the human eye are most sensitive.

The Y primary was speci�cally designed to follow the luminous eÆciency function,

illumination, of human eyes. The most important characteristic of this system is that

all colors can be de�ned by a suitable arrangement of the three primary colors. The

transformation from the RGB to XY Z is de�ned as2666664
X

Y

Z

3777775 =
2666664
0:618 0:177 0:205

0:299 0:587 0:114

0:000 0:056 0:994

3777775

2666664
R

G

B

3777775 (3.2)
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xyz and rgb Spaces

If we are only interested in the ratio of the standard primary colors the xyz

color space is obtained. Here, x, y, and z are called the chromaticity coordinates and

are calculated by dividing respectively the X, Y , and Z coordinates by their total

sum. It is obvious that the intensity information is factored out of the system, be-

cause the chromaticity coordinates reject only the ratio of the three standard primary

colors. Since the sum of the chromaticity coordinates equals unity, two of these three

quantities are suÆcient to describe a color. However, the xyz representation becomes

unstable when intensity is small. It is de�ned as

x =
X

X + Y + Z
; y =

Y

X + Y + Z
; z =

Z

X + Y + Z
(3.3)

Similarly, the rgb color space transforms are speci�ed as

r =
R

R +G+B
; g =

G

R +G+B
; b =

B

R +G+B
(3.4)

Lab Space

In 1976, the CIE created a re�ned model of the XY Z called the Lab (Fig.3.5).

In the Lab, L is the luminance value, a is such that �a is green and +a is red, b is

a value for which �b is blue and +b is yellow. The Lab gamut covers all colors in

visible spectrum. The Lab color space is also called as Y IQ in some context. If we

de�ne X0; Y0; Z0 as the values of a nominally white object-color stimulus, i.e.

X0 =
X

max(X)
; Y0 =

Y

max(Y )
; Z0 =

Z

max(Z)
(3.5)

then transformation from XY Z to Lab can be formulated as

L =

8><>: 116(Y0)
1

3 � 16 Y0 > 0:008856

903:3(Y0) Y0 � 0:008856
; (3.6)

a = 500[(X0)
1

3 � (Y0)
1

3 ]; (3.7)

b = 200[(Y0)
1

3 � (z0)
1

3 ]: (3.8)
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Figure 3.5: The CIE-Lab color space.

YUV Space

The Y UV color space is the basic color space used by the composite color

video standards. Instead of separating colors, the Y UV signal separates the inten-

sity Y from the color components U; V that correspond to the hue and saturation

aspects. The human eye is less sensitive to the hue and saturation. Therefore the

U; V components, which are also called as chrominance, are usually subsampled in

image applications. The Y UV parameters in terms of RGB is2666664
Y

U

V

3777775 =
2666664

0:299 0:587 0:114

�0:169 �0:331 0:500

0:500 �0:419 �0:081

3777775

2666664
R

G

B

3777775 (3.9)

The CIE-Y CrCb is a scaled and o�set version of the Y UV color space. A similar

color space is de�ned by simply calculating color ratios Qrg = R=(R+G) and Qrb =

R=(R +B). This color representation is referred to as Y QQ space.
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Figure 3.6: The HSI color space.

HSI Space

The formulation of Y UV space in polar coordinates, the HSI space, distin-

guishes hue, speci�ed by the angle, saturation as radial component, and intensity

again vertical to the UV plane. Thus, the HSI space is basically an o�shoot of the

Munsell system. Hue is described by the angle about the vertical axis, beginning

with red 0Æ through 360Æ. At every 60Æ another hue is de�ned; respectively yellow,

green, cyan, blue, and magenta. Saturation is a value between 0 and 1, and describes

the ratio of the saturation of the selected hue to its maximum. Intensity is also a

value between 0 and 1. 0 is the value representing the bottom of the hexcone and

1 represents the top of the hexcone. Selecting a hue and setting V = 1 and S = 1,

shades are obtained by decreasing V and tints are obtained by decreasing S. The

HSI is formulated as

H = arctan(

p
3(G�B)

2R�G�B ) (3.10)

S = 1� 3min(r; g; b); (3.11)

I =
R +G+B

3
: (3.12)
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Figure 3.7: Clustering a cubic color space into 8 identical bins.

The problem of HSI is that H becomes unstable when S is near zero due to the non-

removable singularities in the nonlinear transformation, which a small perturbation

of the input can cause a large jump in the transformed values.

3.1.2 Comparison of Color Spaces

The selection of color space is a �rst task for a video processing framework,

particularly for video segmentation. We investigated extensively the properties of

color spaces to determine suitable color space for video segmentation. Each segmen-

tation technique has its own unique characteristics. The parameters and relations

such as color similarity and distance functions, linkage thresholds, gradients, etc., are

all depend the choice of the color space and segmentation technique.

We designed three tests to examine segmentation performances in each color

spaces. The �rst test inspects vector clustering of color spaces that have orthogonal

domains; namely RGB, XY Z, Y UV , and Y CbCr. The target color space is divided

into identical bins, and in each bin the included colors are inspected. Using 8-identical

cubes is the best way to divide an orthogonal space as in Fig. 3.7. The results are

shown in Fig. 3.8. In the �gure, the �rst set of 8-columns corresponds the colors of

8-bins in the RGB space. The other sets are for the Y UV , Y CbCr, XY Z respectively.
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Figure 3.8: The colors in each one of the 8-clusters in: (a) RGB, (b) Y UV , (c)

Y CbCr, and (d) XY Z color spaces. As visible, RGB has the most illumination

depended clustering.

Clustering of some other color spaces, e.g. HSI, is not orthogonal, therefore dividing

into identical bins is not straightforward. We concluded that XY Z and RGB clusters

di�er in luminance. XY Z has the worst hue homogeneity. Hue homogeneity is better

in Y CbCr. Y UV is not luminance sensitive as RGB, however, RGB has better hue

separation.

In a second test, we used adaptive-k means clustering of color vectors from

an test image. Each input image is clustered into 2, 4, and 8 segments. Again,

the magnitude and Euclidian distance norms are used in clustering. We presented

magnitude norm based results in Figures 3.9 - 3.10 for standard MPEG test sequences,

yet the test was conducted with dozens of image. We examined the RGB, rgb, Y UV ,

and HSI color spaces that represent a fair spectrum of all color spaces. Each color
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channel is normalized before clustering. The segmented images are color coded for

illustration purposes. Inspection of the results established that there is a marginal

di�erence between the Y UV and HSI spaces in terms of segmentation performance.

The RGB and rgb are inferior expect some speci�c cases.

In our segmentation framework, the smallest constituents of video objects are

obtained by point-wise color statistics. To manage spatial connectivity, a growing

based approach is utilized. Therefore, a color space that endows better segmentation

for region growing would give superior performance in our method. Our third test

examines the region growing performances for three di�erent cases:

1. hue and saturation are changing, but illumination is constant (Fig.3.11-a),

2. saturation is changing but hue and illumination are constant (Fig.3.11-b),

3. illumination is changing but hue and saturation are constant (Fig.3.11-c).

For each case, a test image is generated. By starting from the center point,

regions are grown. A centroid-linkage method which is explained in the next chapter,

is used to grown regions. When a region does not grow any further, another region

is initiated. The seed of the new region is searched in a circular region that extends

from center to outer boundary around the center of the image. Each region is color

coded in the �gure. The color distance threshold is kept same for all color spaces.

In this way, we were able to evaluate performances of color spaces for segmentation.

We tested the RGB, Y UV , HSI, and rgb color spaces. The segmented regions as

given in Fig.3.11. The second row is the region growing results for RGB color space.

Results shows that this color space is highly sensitive to the illumination changes as

expected. However, it is also sensitive to the hue di�erences more than any other

space. In RGB space, saturation di�erence of same color may ignite another region

as well.

The rgb color space uses illumination scaled color values. It was visible on

the test results too; when the illumination was changing as in the Fig.3.11-c, the
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(a; 2) (a; 4) (a; 8)

(b; 2) (b; 4) (b; 8)

(c; 2) (c; 4) (c; 8)

(d; 2) (d; 4) (d; 8)

Figure 3.9: Akiyo is segmented into 2 (1st column), 4 (2nd column), and 8 clusters

(3rd column). Row (a) corresponds to the RGB, (b) rgb, (c) Y UV , and (d) HSI

color spaces.
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(a; 2) (a; 4) (a; 8)

(b; 2) (b; 4) (b; 8)

(c; 2) (c; 4) (c; 8)

(d; 2) (d; 4) (d; 8)

Figure 3.10: Hanna is segmented into 2 (1st column), 4 (2nd column), and 8 clusters

(3rd column). Row (a) corresponds to the RGB, (b) rgb, (c) Y UV , and (d) HSI

color spaces.
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segmentation still grown a large region. The very small regions in the center are a

result of scaling with very small RGB values. The rgb space was not sensitive enough

to the hue di�erences either. However, it performed well in case of the saturation

changes.

The forth row shows the results of the Y UV color space. The sensitivity to the

hue was satisfactory, it was between the above color spaces. In addition, it was able to

catch saturation and illumination changes without over segmentation. The last row

presents theHSI space results. In this color space, the di�erence computation is more

complicated due to the polar coordinates. HSI fails in case of dim or very highly

saturated colors. Also, for whitish colors it diverges since the hue component has

di�erent values, which is a disadvantage. The HSI performed less than acceptable,

not perceptively as good as the Y UV space.

Note that specifying a color space is a big challenge, yet �nding the best feature

for segmentation is even a bigger challenge. Since the complexity of the analysis de-

mands cumbersome chores, we concentrated on using identical color channels blended

in a magnitude or L2 distance norm.

In addition to the above test, we had the following observations on color spaces:

1. The metric that is used for computing the inter-color distances is the major fac-

tor of selecting a color space. Most of the processing time of a region growing

algorithm is spent by computing the color distances between image pixels. A

simple metric can accelerate segmentation considerably. Color distance compu-

tation in the HSI color space requires use of trigonometric functions or condi-

tionals due to the coordinates. On the other hand, color distance is computed

using the magnitude or L2-norms for the RGB, Y UV , XY Z, and rgb.

2. The RGB su�ers from an important drawback for many vision applications

where features of the environment are marked with identifying colors, such as

\orange", \magenta", etc. We would like our segmentation to be robust in the
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(a) (b) (c)

Figure 3.11: The test images (1st row), the grown regions in the RGB space (2nd

row), the grown regions in the rgb space (3rd row), the grown regions in the Y UV

space (2nd row), the grown regions in the HSI space (2nd row).
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face of variations in the brightness of illumination, so it would be useful to de�ne

\orange" in terms of a ratio of the intensities of R, G and B in the pixel. This

can be done in the RGB color space, but the volume implied by such a relation

is conical and cannot be represented with simple thresholds.

3. In contrast, the HSI and Y UV have the advantage that chrominance is coded

in two of the dimensions (H and S forHSI or U and V for Y UV ) while intensity

is coded in the third. Thus a particular color can be described as a \column"

spanning all intensities.

4. The rgb and xyz are also robust to illumination changes but more expensive

transformations where each of the component colors is speci�ed as a fraction

of the intensity, and the intensity should be added as another dimension. This

projection into a 4D space improves accuracy, but with the cost of the extra

dimension to process and three divisions per pixel to calculate the fractions.

5. The Y UV , Lab, and HSI enable easier clustering of the human skin color

tones, and perform in accordance with human reception with reference to the

opponent-colors theory.

6. MPEG standards utilize the Y UV color space. In case of processing an MPEG

encoded video, using a di�erent color space rather than the Y UV requires extra

computation for color space conversions.

As a result, we preferred to use the Y UV color space in our segmentation

framework. By considering the hue discrimination capability, a second tier would be

the HSI color space.

3.1.3 Texture Elements

We preferred to compute the texture components by the Gabor transform

[63]. The Gabor �lters are quadrature �lters and can be used to extract a certain
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Figure 3.12: A sample Gabor function that detects diagonal lines: (a) in spatial

domain, (b) corresponding response in frequency domain.

wavelength and orientation from an image with a speci�ed bandwidth. A sample

Gabor function in both spatial and frequency spaces are shown in Fig. 3.12. Because

the Gabor �lter is a quadrature �lter, the \energy" of the signal in the �lter band can

be determined by computing the square magnitude of the complex �lter response.

Two-dimensional Gabor �lters h(x; y) have the functional form

h(x; y) = g(x; y)e�2�(px+qy); g(x; y) =
1

2��2g
e
�
x2+y2

2��2g (3.13)

where �2g speci�es e�ective width, p; q specify modulation that has spatial frequency

f =
p
p2 + q2 and direction � = tan�1(q=p), and g(x; y) is the Gaussian kernel. The

texture scores are computed convolving image I(x; y) by the Gabor �lters frame-wise

h(x; y)
 I(x; y): (3.14)

It is acceptable to chose the values for the spatial frequency f = 2; 4; 8 and the

direction � = 0; �=4; �=2; 3�=4 , which leads to a total of 12 texture features. The

computed scores are then normalized as described in [97]. We give 12-texture scores

for a frame of Akiyo in Fig. 3.13. The computed scores are then normalized as

described in [97].
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The computation of the texture elements is computationally very expensive to

be real-time for the existing state-of-art technology. Moreover, blending texture and

color components into a similarity measure demands elaborately extracted weight-

ing parameters for each component. Selection of proper weights is intrinsically a

troublesome task, yet the normalization of each di�erent type of texture score is not

straightforward either. Despite using texture may improve the segmentation results

for speci�c cases, it is omitted in practice.

3.1.4 Edge Elements

Edge magnitude and orientation are among the other elements of spatiotem-

poral data. To compute the edge magnitude and orientation, the Canny operator [23]

is used.

The Canny operator takes as input a gray scale image, and works in a multi-

stage process. First of all the input image is smoothed by Gaussian convolution. Then

a simple 2D �rst derivative operator, somewhat like the Roberts Cross, is applied to

the smoothed image to highlight regions of the image with high �rst spatial deriva-

tives. Edges give rise to ridges in the gradient magnitude image. The algorithm then

tracks along the top of these ridges and sets to zero all pixels that are not actually on

the ridge top so as to give a thin line in the output, a process known as non-maximal

suppression. The tracking controlled by two thresholds: �1 and �2, with �1 < �2.

Tracking can only begin at a point on a ridge higher than �1. Tracking then contin-

ues in both directions out from that point until the height of the ridge falls below

�2. Dual thresholds helps to ensure that noisy edges are not broken up into multiple

edge fragments. Increasing the width of the Gaussian kernel reduces the detector's

sensitivity to noise, at the expense of losing some of the �ner detail in the image. The

localization error in the detected edges also increases slightly as the Gaussian width

is increased. The results of edge detection is demonstrated in Fig. 3.14. The Canny

operator is only applied to the luminance component. Usually, a 7� 7 window with
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a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

Figure 3.13: Texture features obtained by the Gabor �lters for an image from Akiyo.
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Figure 3.14: Edge magnitudes of sample frames.

a smoothing factor � = 0:5 would ful�ll most edge estimation tasks.

3.2 Filtering and Simpli�cation

Over segmentation has several disadvantages; it slows down the algorithm,

increases memory load by increasing the number of regions, more importantly it

causes an additional problem of clustering small regions of slightly textured image

parts. Although image noise can be removed by using low-pass �ltering, median

�ltering, and morphological operators, such �lters often disturb the object boundaries

by smearing or completely changing the edge structure.

3.2.1 Implementation of Fast Median Filter

Median �lter sorts a list with respect to the magnitudes of the list elements,

then �nds the magnitude of the element at the middle of the list, e.g., magnitude
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Figure 3.15: Fast 3� 3 median �ltering exploits 2D coherence.

of the third element in a �ve elements list. We utilized a fast 3 � 3 median �lter

implementation [70] that exploits 2D coherence by dividing the selection process into

several 1D sorting problem to take the advantage of working in smaller lists. Due

to the fact that sorting algorithms are logarithmically complex, using such �lters

are computationally very expensive. In the implementation, two horizontal adjacent

medians are computed in one step as shown in Fig.3.15. Let a; b; c; d be 3�1 columns
of a 3� 4 image window. Let b3x3; c3x3 represent the 3� 3 windows around the center
points of b and c.

1. First, slices c and d are sorted, slices a and b were already sorted in previous

step (6 comparisons).

2. Slice b and c are merged to thick slice bc (5 comparisons).

3. Slice a and bc are merged to compute median for b3x3 (4 comparisons).

4. Slice d and bc are merged to compute median for c3x3 (4 comparisons).
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Figure 3.16: The kernel of a Gaussian �lter, and its frequency domain correspondence.

Therefore, the number of necessary comparisons is reduced to from 30 to 9.5. The

comparisons are carried out using nested if-loops.

3.2.2 Low-Pass Filtering by Gaussian Kernels

Gaussian �lter is basically a low-pass �lter that is used to blur image and re-

move detail and noise. Its kernels in both frequency and spatial domains are Gaussian

\bell-shaped" kernel,

g(x; y) =
1

2��2
e�

x2+y2

2�2 : (3.15)

where x; y are coordinates, sigma2 is the variance that acts as a smoothing param-

eter. Gaussian �lter outputs a weighted average of each pixel's neighborhood, with

the average weighted more towards the value of the central pixels. Thus, it provides

gentler smoothing and preserves edges better than a similarly sized mean �lter. How-

ever, Gaussian �lter assumes that noise is normal distributed. For salt-and-pepper

type of noise, this �lter reduces the intensity of the noise, but also attenuates high

frequency detail and smears noise out over a larger spatial region. Another drawback

of the low-pass �ltering is also obvious at Gaussian �ltering; the region boundaries

are smeared and disturbed.
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Figure 3.17: Basic binary morphological operators; original, opened, closed, and

smoothed.

3.2.3 Smoothing by Morphological Operators

Morphological �lters are nonlinear �lters suited to the selective removal of im-

age structures. This can be achieved by probing image with another set of given shape

called as the structuring element. Erosions and dilations are the two fundamental

morphological operators because all other operators are based on their combinations.

Erosion answers the question \Does the structuring element �t the set?" The eroded

set is the locus of points where the answer to this question is aÆrmative. We will

consider structuring elements, A, that comprise a �nite number of pixels and are
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convex and bounded to simplify matters. Gray-level dilation is given by

Dg(I; A) = I � A = max
i;j2A
fI(x� i; y � j) + A(i; j)g: (3.16)

For a given output coordinate [x; y], the structuring element is summed with a shifted

version of the image I and the maximum encountered over all shifts within the domain

of A is used as the result. Similarly, gray-level erosion is de�ned as

Eg(I; A) = I 	 A = min
i;j2A
fI(x� i; y � j) + A(i; j)g (3.17)

The dilation is the dual operator of the erosion and is based on the following question:

\Does the structuring element hit the set?" The dilated set is the locus of points

where the answer to this question is aÆrmative. In many situations the seeming

complexity of gray level morphological processing is signi�cantly reduced through the

use of symmetric structuring elements where A(i; j) = A(�i;�j). The most common
of these is based on the use of A = constant = 0. For this important case and using

again the domain of A, the de�nitions above reduce to:

Dg(I; A) = I � A = max
A

(I; A) (3.18)

Eg(I; A) = I 	 A = min
A
(I; A) (3.19)

Once an image has been eroded, there exists in general no inverse transformation to

get the original image back. The idea behind the morphological opening is to dilate

the eroded image to recover as much as possible the original image. The opening by

a structuring element A is denoted by O and is de�ned as the erosion by A followed

by the dilation with the transposed A. The idea behind the morphological closing is

to build an operator tending to recover the initial shape of the image structures that

have been dilated. This is achieved by eroding the dilated image. To summarize

Open(I; A) = ffI 	 Ag � Ag (3.20)

Close(I; A) = ffI � Ag 	 Ag: (3.21)
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Morphological smoothing is based on the observation that a gray-level opening smoothes

image from above the brightness surface, and the gray-level closing smoothes from

below. Thus, smoothing is achieved by �nding maxima and minima consecutively in

a window shaped as the structure element

SmoothfI; Ag = Close(Open(I; A); A)

= ffffI 	 Ag � Ag � Ag 	 Ag (3.22)

= min
a2A
fmax
a2A
fmax
a2A
fmin
a2A
fI; Agggg (3.23)

Contrary to linear �lters, morphological �lters preserve sharp edges. The basic idea

behind a morphological �lter is to suppress image structures selectively. These struc-

tures are either noise or irrelevant image objects. We used a 3 � 3 block as the

structuring element A in the given results.

3.2.4 Image Simpli�cation by Robust Estimators

Simpli�cation can be viewed as a smoothing operator such that object bound-

aries and object colors are preserved as much as possible. When region growing is the

target application, image simpli�cation becomes a useful tool since it can e�ectively

remove unnecessary texture that causes over segmentation.

The term robust is, in general, referring to a statistical estimator, it means \in-

sensitive to small departures from the idealized assumptions for which the estimator

is optimized." The word small can have two di�erent interpretations, both important:

either fractionally small departures for all data points, or else fractionally large de-

partures for a small number of data points. Out of various sorts of robust statistical

estimators, we prefer to employ M-estimates that follow from maximum-likelihood

arguments. M-estimates are usually the most relevant class for model-�tting, that is,

estimation of parameters.

Given a set of observations, one often wants to condense and summarize the

data by �tting it to a model that depends on adjustable parameters. Suppose that
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Figure 3.18: The quadratic error norm function, and its derivative. The derivative

determines how much the di�erence will be weighted.

we are �tting N data points (xi; yi) i = 1:::N , to a model that has M adjustable

parameters aj j = 1:::M . The model predicts a functional relationship between the

measured independent and dependent variables,

y(x) = y(x; a1:::aM) (3.24)

where the dependence on the parameters is indicated explicitly on the right-hand

side.

Least-Squares Estimator

A number of techniques are known to �t data to a model. The most common

prior art techniques use the familiar least-squares �t,

min
a1 ::: aM

NX
i=1

[yi � y(xi; a1:::aM )]2 (3.25)

If each data point yi has a measurement error that is independently random and

distributed as a normal distribution around the a model y(x), and if the standard

deviations of the normal distributions are the same for all data points, then the

probability P of the data set is the product of the probabilities
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Figure 3.19: The Lorentzian error norm, and its derivative.

P /
NY
i=1

exp

24�1
2

 
yi � y(xi)

�

!2
35 (3.26)

Maximizing above equation is equivalent to maximizing its logarithm, or minimizing

the negative of its logarithm,

NX
i=1

 
yi � y(xi)

�

!2

(3.27)

If the derivative of the above equation is taken with respect to the parameters ak,

then the resulting equations must hold at the minimum,

NX
i=1

 
yi � y(xi)

�2

! 
@y(xi; ak)

@ak

!
= 0; k = 1:::M: (3.28)

This demonstrates that least-squares �tting is a Maximum-likelihood estimation of

the �tted parameters when the measurement errors are independent and normally

distributed with constant standard deviation.

Robust Estimator

The data �tting analogy can be generalized using an error norm function �

instead of the least-squares. The �tting formula for the estimated parameters a in a
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model y(x; a), that is, equation 3.25 becomes,

min
a1 ::: aM

NX
i=1

�(yi � y(xi; a1:::aM); �): (3.29)

The Maximum-Likelihood formula for the probability P of the data set is the product

of the probabilities of each data point can be rewritten as,

P /
NY
i=1

exp [�� ((yi � y(xi); �)] (3.30)

To maximize the above equation, it is necessary to minimize the expression,

NY
i=1

� ((yi � y(xi); �) : (3.31)

The derivative of �(z) is de�ned as a function  (z);

 (z) � d�(z)

dz
: (3.32)

Then the generalization of the case of a general M-estimate is,

NX
i=1

1

�
 

 
yi � y(xi)

�2

! 
@y(xi; ak)

@ak

!
= 0; k = 1:::M: (3.33)

Note that for the least-squares the error norm is

� ((yi � y(xi); �) =
 
yi � y(xi; ak)p

2�

!2

: (3.34)

However, the least-squares approach is notoriously sensitive to outliers; the problem

being that outliers contribute \too much" to the overall solution. Outlying points are

assigned a high weight by the quadratic function �. If the measurement errors are not

normally distributed, or data may be corrupted by gross error then the least-square

�t is substantially less than optimal. Therefore, what is needed is a robust estimator

that can be applied to data whose measurement errors are not normally distributed.

To describe the structure best �tting the bulk of the data, and to identify deviating

data points are the main goals of robust estimators.
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Figure 3.20: Fitting a line to the data points by using LMS and robust estimators.

Consider, for example, the least-squares quadratic �-function that has deriva-

tive

�(z) =
1

2
z2;  (z) = 2z (3.35)

For least-squares estimation, the inuence of outliers increases linearly and without

bound as shown in Fig.3.18. To increase robustness, an estimator must be more

forgiving about outlying measurements. Robustness can be increased by using a �-

function that falls away from the quadratic more quickly. Consider the following

Lorentzian estimator:

�(z; �) = log

 
1 +

z2

2�2

!
;  (z; �) =

2z

2�2 + z2
: (3.36)

As shown in Fig.3.20-a for normally distributed errors, the Gaussian distribution gives

more weight to the deviant data points, when �tting the line to the data. In contrast,

when the tails of the distribution are even larger, as in the Lorentzian function, the

function  (z) increases the weights of moderately deviant data, but then the weights

decrease, so that extremely deviant data, the "true" outliers are not counted at all in

the estimation of the parameters, as shown by the line in Fig.3.20-b.

We build optimization-based �lter by using downhill simplex minimization.



96

The downhill simplex method requires only function evaluations, not derivatives.

It has a geometrical naturalness. A simplex is the geometrical �gure consisting,

in N dimensions, of N + 1 points (or vertices) and all their interconnecting line

segments, polygonal faces, etc. In two dimensions, a simplex is a triangle. In three

dimensions it is a tetrahedron, not necessarily regular tetrahedron. In general we are

only interested in simplexes that are non-degenerate, i.e. which enclose a �nite N -

dimensional volume. If any point of a non-degenerate simplex is taken as the origin,

then the N other points de�ne vector directions that span the N -dimensional vector

space. To start the method we need to choose the �rst point to start. The algorithm

is then supposed to make its own way downhill through the unimaginable complexity

of an N -dimensional topography, until it encounters (at least local) minimum. The

downhill simplex method must be started not just with a single point, but with N +1

points, de�ning an initial simplex. The method now takes a series of steps, most steps

just moving the point of the simplex where the function is largest (\highest point")

through the opposite face of the simplex to a lower point. These steps are called

reections, and they are constructed to conserve the volume of the simplex (hence

maintain its nondegeneracy). When it can do so, the method expands the simplex

in one or another direction to take larger steps. When it reaches a \valley oor,"

the method contracts itself in the transverse direction and tries to ooze down the

valley. If there is a situation where the simplex is trying to \pass through the eye of

a needle," it contracts itself in all directions, pulling itself in around its lowest (best)

point.

For each pixel of the input image, a local region centered on the pixel is as-

signed. The size of a local region is determined from the simpli�cation parameter. A

model function u(x; y; a) where a = [a1; ; aM ], is �tted to the image intensity values

I(x; y) within each region. In other words, the image simpli�cation method �ts a

brightness model u to image data I(x; y). The model function can be a polynomial,

a piece-wise continuous function, as well as other surface functions that can be pa-
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Figure 3.21: Image points are compared with their vertical and horizontal neighbors.

rameterized by a �nite number of parameters. Within each region, an error term is

computed for each pixel. The error term includes the accumulated di�erences be-

tween the model function's value at a pixel and the pixel's original intensity value.

The error term norm is assigned as a Lorentzian function, which was given above.

3.2.5 Recursive Band-Suppression Filters

By recursive band-suppression �lters, we reduce the spatial variance without

any quantization nor disturbing the edge structure. Its implementation involves very

simple operators. Speci�c but not limited to video processing, �ltering tools should

be computationally as simple as possible. We developed an iterative suppression tech-

nique that can be implemented by parallel programming to decrease the processing

time. Let I denotes the input image. We compare the color value of a pixel I(x; y)

with its neighbors. If the color distance is less than a threshold Æ, the pixel's color

value is updated by the average of its neighbors within a local window. For parallel

implementation considerations, the pixels are compared to their vertical neighbors at

the �rst pass, and then to their horizontal neighbors as illustrated in Fig.3.21. The

horizontal pass along the x-axis that gives the simpli�ed image at the iteration level
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k+1 is de�ned as

I(x; y)k+1 =

8><>:
1
2
[I(x; y)k + I(x+1; y)k] d � Æ

I(x; y)k d > Æ
(3.37)

d = jI(x; y)k � I(x+1; y)kj (3.38)

Similarly, the vertical pass is done by using the vertical neighbor I(x; y+1). Since

�ltering operation intends to simplify image texture, smooth spatial variance is as-

sumed to contribute to the noise statistics. The threshold Æ is assigned to � + 2�

where �; � are the mean and variance of the noise, respectively. For a zero-mean

Gaussian noise model N(0; �2), the threshold reduces to 2�. At this level, 95:45% of

the noise has smaller magnitude than the threshold. If a noise model is unavailable,

the threshold Æ is assigned to the maximum color distance that does not correspond

to an edge point. It is observed that Æ ' 8 is a good compromise for 28 bit coded

channels.

For a noise contaminated 1D signal, we simulated �ltering performance as

given in Fig.3.22-3.23. The �rst signal (Fig.3.22-a) is a 1D step shaped signal that

is contaminated by additive normal noise. The second row is the Gaussian �ltered

result using a 5-tap long kernel. The third row corresponds 21-tap Gaussian �ltering.

As visible, the �ltered signal is becoming smoother. The forth row is morphological

derivative obtained by closing and opening operations. The �fth row is the median

�ltering. It is perceptible that sharp steps of input signal are more preserved with

median and morphological �lters rather than Gaussian. The last row is the suppres-

sion �lter result. The sharp edges are very well preserved, although the signal not

as smooth. Note that a second pass of suppression would preserve edges as well as

smooth the signal easily. Fig.3.23 shows the derivatives of the original and �ltered

signals. It is obvious that suppression maintains the sharp edges best.
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Figure 3.22: (a) original signal, (b) 5-tap Gaussian, (c) 21-tap Gaussian, (d) morpho-

logical smoothing, (e) median �ltering, (f) suppression �lter.
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Figure 3.23: Derivatives of the (a) original image, (b) 5-tap Gaussian, (c) 21-tap

Gaussian, (d) morphological smoothing, (e) median �ltering, (f) suppression �lter.
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3.2.6 Comparison of Filters

We exhaustively tested some of the existent and also our own novel �ltering

techniques; median, morphological, low-pass �ltering, image simpli�cation, and band-

suppression �lters. These �lters are applied to each video frame. It is possible to use

a 3D �lter kernel or apply a �lter along the time axis of the video, e.g. on xt or

yt-planes, however, such a �ltering blurs image region where motion is present.

Sample sets of �ltering results are demonstrated in �gures 3.24 - 3.25. Here,

image a's are the original images, b's are 3�3 fast median �ltered outputs. Images c's
are the Gaussian �ltered results with a window size 5�5. The morphological smoothing
results based on gray level opening/closing with a 3�3 structuring element are given
in d's. The simpli�ed images using Lorentzian based robust estimator are e's. The

suppression �lter results are f's.

The Gaussian �lter is not computationally cheap, besides, it causes the most

destroyed and blurred edge structure out of the �lters we tested. Having a sharp

edge structure, region growing segmentation do not cut across the object boundaries.

On the other hand, morphological smoothing performance depends the structuring

element. For structuring elements larger that 3�3 windows, it becomes signi�cantly
slower. Since it does not preserve the edges, iterative application destroys boundaries

although it can smooth image well. Median �lter is e�ective to remove salt-and-

pepper noise and sparks, as well as it preserve edge structure. However, using a 3�3
kernel is not suÆcient to remove the interfering texture. The fast implementation of

the higher order kernels rather than 3�3 is practically very diÆcult. Thus, for larger
window sizes it becomes computationally very demanding.

Our novel band suppression �lter design is the most suitable in terms of com-

putational simplicity. It can remove the low frequency texture e�ectively, too. It also

preserves the edge structure best. One disadvantage of suppression is that it is un-

able to remove salt-and-pepper noise. The simpli�cation by image reconstruction is a

good compromise between texture smoothing, edge preservation, and computational
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constraint.

3.3 Change Detection Mask

The change detection mask (CDM) is de�ned as the color dissimilarity of two

frames with respect to a given set of rules. A common operation before extracting the

CDM is global motion compensation. The computational simplicity makes the CDM

a good candidate for real-time applications [37]. Considering a stationary camera,

consistent objects, and constant lighting conditions, the pixel-wise color di�erence

of two consecutive frames is an indication of moving objects in the scene. However,

not all the color change happen because of moving objects; camera motion, intensity

changes and shadows due to the nonuniform lighting between video frames, and image

noise also contribute frame di�erence. Thus, although the CDM gives clues about the

object in the scene, it is mostly unreliable. A moving region that has smooth color

texture might be missed, whereas a stationary background might be observed as in

motion because of a slight shake of the camera imaging plane. Using the CDM alone

to decide objects and their movements gives poor performance.

On the other hand, for the cases where the motion is very low, rigid body

constrained models are ine�ective, and region growing causes over-segmentation, the

CDM may provide acceptable segmentation results. It can be blended into the other

segmentation techniques as an additional feature to improve the accuracy.

There are various approaches to obtain change detection masks in the litera-

ture. Generally, the change detection mask between two successive frames is estimated

by global thresholding the frame di�erence. Let I(p; t) and I(p; t+1) be the luminance

values of pixel p at time t and t+1, respectively. A simple CDM c(p; t) is computed

by

c(p; t) =

8><>: 1 jI(p; t)� I(p; t+1)j > �

0 otherwise
(3.39)
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(a) (b) (c)

(d) (e) (f)

Figure 3.24: (a) The original image, (b) median �ltered, (c) Gaussian �ltered, (d)

morphological smoothed, (e) simpli�ed, and (f) suppression �ltered results.

(a) (b) (c)

(d) (e) (f)

Figure 3.25: . (a) The original image, (b) median �ltered, (c) Gaussian �ltered, (d)

morphological smoothed, (e) simpli�ed, and (f) suppression �ltered results.



104

Because the above de�nition of CDM is sensitive to the noise, a local window } with

size K is usually incorporated to compute block di�erence

c(p; t) =

8><>: 1
P

i jI(pi; t)� I(pi; t+1)j > �K; pi 2 }
0 otherwise

(3.40)

Alternatively, a minimum di�erence score within a window in the next frame can be

assigned as the CDM instead of taking pixel-wise di�erences

c(p; t) =

8><>: 1 min jI(p; t)� I(pi; t+1)j > � pi 2 }
0 otherwise

(3.41)

In [81], the boundaries of changed image areas are smoothed by a relaxation technique

using local adaptive thresholds [1],

d2 = [I(p; t)� I(p; t+1)]2

c(p; t) =

8><>: 1 d2 > 2�2n�
2

�2n+�
2 [k

+(v+c � v+u ) + kx(vxc � vxu)]
0 otherwise

(3.42)

Above, the parameters c; u correspond the pixels where the CDM is 1 and 0, rescpec-

tively. The rule should read as follows: if d2 exceeds the threshold term on the

right hand side of the above equation, the point is set to changed, otherwise it is

set to unchanged. In the threshold term, �2n is equal to twice the variance of the as-

sumed Gaussian camera noise distribution. �2 is the variance of luminance di�erences

within object regions. The terms v+ and vx, are a measure for the inhomogeneity

of the neighborhood of pixel, which is separated into horizontal or vertical neighbors

and diagonal neighbors. The term v+ denotes the number of horizontal and vertical

neighbors of the pixel with the opposite label. In the same way the term vx denotes

the number of diagonal neighbors of the point with the opposite label. The algorithm

adapts frame-wise to the variances �2 and �2n.

In [4], the mask after thresholding is connected with the previous. Speci�cally,

the mask after thresholding is extended by pixels which are set to foreground in the
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of the previous frame. This is based on the assumption that all pixels which belonged

to the previous should belong to the current change detection mask. In order to

avoid in�nite error propagation, however, a pixel from the previous is only labeled as

changed in the change detection mask, if it was also labeled as changed in one of the

last frames. The value denotes the depth of the memory, which adapts automatically

to the sequence by evaluating the size and motion amplitudes of the moving objects

in the previous frame. By the last step, the mask is simpli�ed and small regions are

eliminated.

We preferred to compute di�erence within a local window since taking pixel-

wise frame di�erence is very noise sensitive. The larger the size of the matching

window, the less sensitive the CDM becomes to the image noise, but also, more

resistant to region movements. Thus, there is a trade-o� between the size of the

window and the sensitivity of the CDM. We observed that a window size between

3� 3 to 5� 5 is a good compromise. First, window-wise di�erences Æ(p) is computed

for a pixel p in the current frame t and a set of pixels qn in the following frame t+1

within a matching window }1 as

Æ(p; qn) =
X
i

X
k

jIk(pi; t)� Ik(qn;i; t+1)j (3.43)

where pi's are the pixels in the matching window, and qn;i's are the pixels in the next

frame around the center pixel qn, and k represents the color channels. To compensate

small motion, the center pixels qn in the next frame are selected within a 3�3 block
}2 around p. The minimum of the computed distances Æ(p; qn)'s then determines the

CDM score of pixel p

c(p; t) =

8><>: 1 �
64
< minn Æ(p; qn);

0 otherwise
(3.44)

where qn 2 }2. Above, � is the averaged dynamic color range of the three channels.

To improve spatial connectivity of the binary CDM, an averaging operation may also

be incorporated. Fig. 3.26 shows CDM results obtained with various window sizes
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.26: (a) A frame from video, (b) pixel-wise di�erence computed for that

frame, (c) minimum distance in 3�3 window, (d) result b thresholded by 8, (e) result

b thresholded by 16, (f) result of (b) averaged in 3�3, thresholded by 8, (g) result of

(b) averaged in 5�5, thresholded by 8, (h) result of (b) scored in 3�3 by 8, thresholded
by 4, (i) result of (c) averaged in 3�3, thresholded by 8, (j) result of (c) scored in

3�3 by 8, thresholded by 4, (k) result of (c) averaged in 5�5, thresholded by 8, (l)

minimum distance in 5�5 window averaged in 5�5, thresholded by 4.
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and techniques for a highway surveillance video. In the �gure, (a) is a frame from

video, (b) is the pixel-wise di�erence computed for that frame, (c) is the minimum

distance in 3�3 windows, (d) is the result of (b) thresholded by 8, (e) is the result b

thresholded by 16, (f) is the result (b) averaged in 3�3 and then thresholded by 8,

(g) is the result (b) averaged in 5�5 and then thresholded by 8, (h) is the result (b)

scored in 3�3 by 8 and thresholded by 4. Here, scoring refers to and thresholding the
number of points in a window, i.e., as a local statistical evaluation. The Fig.3.26-(i)

is the result (c) averaged in 3�3 and thresholded by 8, (j) is the result (c) scored in

3�3 by 8 and thresholded by 4, (k) is the result (c) averaged in 5�5 and thresholded

by 8, l is the minimum distance in 5�5 window averaged in 5�5 and thresholded by

4. It is visible that instead of simple thresholding, an averaging based thresholding

gives less noisy CDM masks. Increasing the size of the averaging window decreases

the number of pixels marked as changed, and improves the CDM precision. Using the

minimum in a window did not improve quality signi�cantly, yet it is computationally

demanding.

3.4 Summary

There are two main contributions of this chapter. The �rst contribution is

the development of the spatiotemporal data structure from the input video sequence

to integrate motion attributes of moving regions and spatial segmentation results.

The second contribution is to development of two image �ltering mechanisms, which

employ robust estimators and regressive band-suppression �lters. This �lters are

adopted in the segmentation framework to remove noise as well as simplify spatial

color variance.

With regard to spatiotemporal data structure, several pixel-wise attributes are

considered, and also color spaces are evaluated to determine an optimal space for vol-

ume growing based techniques. The metric that is used for computing the inter-color
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distances is the major factor of selecting a color space. Since most of the processing

time of a region growing algorithm is spent by computing the color distances between

image pixels, a simple metric can accelerate segmentation considerably. Among the

other considerations are robustness towards illumination changes, capability to sepa-

rate chrominance from luminance, exibility of identifying application speci�c colors,

i.e. skin colors, and whether the performance conforms with human reception. Exper-

imental results indicate that the Y UV space provides better segmentation for region

growing while keeping the computational complexity low.

In the �ltering stage, the disadvantages of classical Gaussian, morphological,

and median �lters are addressed. The Gaussian �lter is computationally expensive,

besides it blurs edge structure. On the other hand, morphological smoothing perfor-

mance depends the structuring element. For large structuring elements, it becomes

considerably slow. It does not preserve the edges either especially when it is itera-

tively applied. Median �lter is e�ective in removing salt-and-pepper noise and sparks

and preserving edge structure. However, the fast implementation of the higher or-

der kernels is practically very diÆcult, and �ltering operation for larger window sizes

becomes computationally very demanding. The introduced band suppression �lter de-

sign is the most suitable in terms of computational simplicity. It can remove the low

frequency texture e�ectively and also preserves the edge structure. One disadvantage

of suppression is that it is unable to remove salt-and-pepper noise. The simpli�ca-

tion by image reconstruction is a good compromise between texture smoothing, edge

preservation, and computational constraint. The second �lter design utilizes robust

estimators to �t a planar surface to windows centered around image pixels. Although

it has higher complexity than the suppression �lters, this �lter can e�ectively remove

noise and spatial texture utilizing downhill simplex minimization techniques.

We also elaborated standard change detection mask approaches. Instead of

using pixel-wise di�erences, the minimum of window-wise distances are considered to

compensate for small motion as well as noise. This mask is then utilized to determine
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one of the object descriptor as explained in the next chapter.



110

Chapter 4

An Unsupervised Moving Object Segmentation

Framework

If you will be observant and vigilant, you will see at every moment the
response to your action. Be observant if you would have a pure heart, for
something is born to you in consequence of every action.

Rumi

4.1 System Architecture

Video segmentation aims to extract objects, determine events, mine for speci�c

information, and analyze characteristics of a video sequence. Each of the segmenta-

tion algorithms summarized in Chapter 2 has is own advantages. However, they are

based solely on a single criterion to solve the many-sided segmentation problem, or

designed for speci�c applications. It would be desirable to have a general segmenta-

tion framework that combines distinct qualities of separate methods without getting

hampered into their pitfalls.

Semi-automatic segmentation methods have the power of correlating semantic

information with extracted regions using human assistance. Such assistance often

obligates training of user to understand the behaviour of the segmentation method.

Besides, for real-time and large scale systems, entering object boundaries by hand
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is cumbersome. Real-time video systems require user independent processing tools

to deal with multiple channels of streaming data. In addition, the vast amount of

video data demands for automatic segmentation. Thus, developing a segmentation

framework that operates with minimal human supervision is a main objective.

Color clustering based methods are computationally simple. Histogram anal-

ysis delivers satisfactory segmentation result especially for multi-modal histograms,

and makes it possible to adapt certain thresholds for di�erent input video. On the

other hand, these methods fail to establish spatial connectivity although they attempt

using morphological tools, which impair boundaries and slow down the process, or

fuzzy estimators to improve connectivity. Obtaining accurate object boundaries is

important for the object-oriented coding standards. In terms of connectivity and

boundary accuracy, region growing based method performs better.

Although motion give the most discriminative information in video segmenta-

tion, the estimation of an accurate dense motion �eld is extremely slow, hence not

suitable for processing of large volumes of video and real-time data. Motion models

or block-wise motion vectors may be used instead of dense motion �elds. Whereas, a

chicken-egg problem exists in modeling motion; should the region of motion �eld that

a model will be �tted be determined �rst, or should motion �eld be used to obtain

the region of motion? Stochastic methods are capable to overcome the above problem

by simultaneously modeling ow �eld and spatial connectivity, but they require the

number of objects supplied as a priori information before the segmentation. Small

and non-rigid motion gives rise to additional model �tting diÆculties. Briey, com-

putational complexity, priority, and modeling issues are to be considered in utilizing

motion for segmentation.

Existing tracking techniques do not employ a feedback of segmented regions

which exploits segmentation results of a frame to improve the accuracy of the already

segmented previous frames. The propagation of segmentation results is usually viewed

as a tracking problem. Yet, for most of the cases, more than two video frames are
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Figure 4.1: Flow diagram of the video segmentation algorithm showing all the major

modular stages.

already available before segmentation. It will improve the segmentation performance

if we can propagate object information forward and backward in time without saddling

into the initial segmentation limitations.

Another constraint arises from the diversity of prospective segmentation appli-

cations that need di�erent processing tools. A general purpose object segmentation

system is expected to be made up by compatible processing modules that can be

easily modi�ed with respect to the application parameters. Even user assistance and

any priori information should be easily embedded into the segmentation framework

without reconstructing the system architecture.

In summary, we designed our segmentation framework to meet with the fol-

lowing targets
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� Automaticity,

� Adaptability,

� Accuracy,

� Computational complexity,

� Information propagation.

A general ow diagram of the video object segmentation framework is given in Fig.

4.1. In the diagram, main algorithm and extension of the main algorithm are shown

in di�erent colors.

Before segmentation, the input video sequence is sliced into video shots that are

de�ned as groups of consecutive frames having similar attributes between two scene-

cuts. Emerging multimedia description standards de�ne key frames representing each

scene-cut; with MPEG-7 encoded sequences, the scene-cut information is already

available. For raw data, key frames are extracted by using color histograms of the

frames. Our algorithm takes certain number of consecutive frames within the same

video shot, which we called as a video chunk, and process them at the same time. The

length of the video chunk could be the length of the corresponding shot, or a size that

exhibits discriminatory object motion within. Two limiting factors are the memory

requirement due to large data size, and latency. For video chunks that contain 10�50
frames, both of these constraints can be satis�ed using a decent system con�guration.

We apply one of the �lters explained in the previous chapter to the input

video data. A simpli�cation �lter or a median �lter is used if strong noise is present,

otherwise a suppression �lter is employed. The salt-and-pepper type of noise can

be determined by evaluating the spatial frequency statistics, particularly at the high

end of the frequency spectrum. If we assume that the noise is white then its spatial

distribution over the image will be random. Measure of randomness can be tested

using a relative variance score. It is calculated by �rst computing the mean and
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variance of the edge pixels in small image windows, from which a median variance

score can be found. Although the test is sensitive to the window size and edge pixel

density it works adequately as long as the number of the windows is suÆciently large.

This evaluation is done for a sample image from the video data. Basic statistics are

also extracted in the �ltering stage to determine video adaptive parameters.

A spatiotemporal data structure is formed by indexing the point-wise features

of frames to access video data e�ectively. These features include color values, edge

magnitude, change detection, texture, etc. After �ltering and building the spatiotem-

poral data structure, markers are selected. We acquired the smallest homogeneous

parts of the spatiotemporal data by growing a volume around marker points, that are

also called as seed in some other references. Markers are used for enlarging volumes

by using color and texture based similarity criteria. The grown volumes are re�ned

to remove small and shell-like volumes. Then, motion trajectories are determined.

These trajectories serve as the estimations of translational motion. Without motion

estimation, a functional approximation of motion is obtained. Self-descriptors for

each volume, mutual-descriptors for a pair of volumes are computed from trajecto-

ries and also from other volume statistics. These descriptors are designed to capture

motion, shape, color and other characteristics of the grown volumes. At this stage,

we have the smallest homogeneous parts of a video sequence and their relations in

terms of descriptors. Application speci�c constraints can be incorporated as separate

descriptors.

In a following clustering stage, volumes are merged into objects by evaluating

their descriptors. An iterative, hierarchical �ne-to-coarse clustering is carried out

until the motion similarity of merged objects becomes small. Alternative clustering

techniques, i.e. adaptive k-means or fuzzy clustering, can also be used. After clus-

tering, an object partition tree that gives the video object planes for every possible

number of objects is generated. The object partition tree is appended to the input

video for further recognition, data mining, event analysis purposes.
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S volumetric spatiotemporal data
xM ; yM ; tM dimensions of S
p a point of S; p = (x; y; t)
m a marker point and its vector
w(p) a vector of S at point p
wy(p) color value (Y ) at point p
wu(p) color value (U) at point p
wv(p) color value (V ) at point p
wd(p) change detection mask at point p
w�(p) texture elements at point p
we(p) edge magnitude at point p
w�(p) edge orientation at point p
wtc(p) target color mask at point p
rS(p) color gradient at point p
Vi a volume within S
Rt
i region of Vi at frame t

(i) quantitative descriptor of volume Vi
�(i; j) relational descriptor of volume pair Vi and Vj

Table 4.1: Notation of common parameter.
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Figure 4.2: Construction of spatiotemporal data from the video.

The red colored boxes in Fig.4.1 represents the mentioned algorithm. In case

MPEG-7 dominant color descriptors are available, as shown in blue, they are embed-

ded in the volume growing stage. Change detection masks (green) are essential for

speci�c applications such as surveillance that has stationary background. For human

featuring video, skin color map (purple) is incorporated. An improved motion de-

scriptor can be determined using available MPEG motion vectors in the clustering

loop (orange). We will explain extensions in detail in the following sections. Table

4.1 summarizes the notation used in this chapter.

4.2 Formation of Spatiotemporal Data Structure

Frames of the input video are assembled into a spatiotemporal data structure

S as illustrated in Fig. 4.2. Each element of this data structure S(x; y; t) is a vector

w(x; y; t) = [y; u; v; d; �k; e; �; tc]x;y;t that consists of color values, change detection

scores, texture and other statistics of the spatiotemporal point (x; y; t), which is also

denoted as p. Here, (x; y) is the spatial coordinates and t is the frame number. The

parameters y; u, and v stand for the luminance and chrominance values in the Y UV

color space respectively, d is the change detection mask, �k's are texture scores, e and

� are edge magnitude and orientation, and tc is the target color mask. We used a
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Figure 4.3: Original images from the input test sequences.

simpli�ed notation for the components of the spatiotemporal data vector w(x; y; t),

e.g., wd(x; y; t) or wd(p) for the change detection mask value of the point p.

Color Elements

The �rst three elements of the vector w(x; y; t) are the Y UV color space values

(wy; wu; wv) of an image point (x; y) at frame t. We preferred the Y UV color space

basically since it has illuminance independent component, it performs in accordance

with the human perception, and color distance can be computed using the magnitude

or magnitude-square norms rather than complicated divisions and inversions. More

discussion is given in the previous chapter. The metric used for computing color

distances is a major factor of selecting a color space. A simple metric accelerates

segmentation signi�cantly because most of the processing time of a volume growing

algorithm is spent while computing the color distances between the points. In Figures

4.3, 4.4, 4.5, the original frames from our test sequences and their Y; U; V channels
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Figure 4.4: Y channel of the original images from the input test sequences.

are shown.

Texture Elements

The texture components w�1 ; : : : ; w�K are computed by convolving the lumi-

nance channel wy with the Gabor �lter kernels as

w�;k(x; y; t) = jhk(x; y)
 wy(x; y; t)j: (4.1)

It is suÆcient to employ the values for the spatial frequency f = 2; 4; 8 and the

direction � = 0; �=4; �=2; 3�=4 , which leads to a total of 12 texture features. The

computation of the texture elements is computationally very expensive to be real-

time for the existing state-of-art technology. Moreover, blending texture and color

components into a similarity measure demands weighting parameters for each texture

component. To accelerate segmentation, texture scores may be disregarded.
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Figure 4.5: U and V channels of the original images. These channels are coded in

lower bit rates in MPEG video.

Edge Elements

Although they are not utilized in the current implementation, edge attributes

are proposed as a part of the spatiotemporal data for the future applications. Edge

magnitude we and orientation w� are among the elements of spatiotemporal data

vector w. These attributes are used for controlling linkage methods of volume growing,

and rendering local image statistics for the following stages. As explained before, the

Canny edge operator [23] is applied to compute the edge magnitude, and vector

transform based method is utilized to determine the edge orientation for color data.

4.2.1 Filtering

Two main objectives of �ltering are noise removal and simpli�cation of color

components to prevent volume growing algorithm from over-segmentation. The ex-

cessive number of small volumes not only slows down the algorithm, but also increases

the array sizes and memory requirements. Small volumes require removal, and the

unmarked points after removal need to be grouped within an existing volume which

is a demanding work. Therefore, �ltering improves the speed and stability of segmen-

tation. However, most noise �ltering techniques are also computationaly expensive

especially considering the number of frames even a short video sequence may include.
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Figure 4.6: Originals (1stand3rd rows) and �ltered (2ndand4th rows) images using the

simpli�cation �lter.
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The trade-o� between the speed and quality is a user preference. We favored the sim-

pli�cation �lter because it keeps the edge structure, smoothens texture within edges.

It is also computationally feasible. The �ltered input images are given in Fig. 4.6.

4.2.2 Color Quantization & MPEG-7

An alternative simpli�cation method is color quantization. From the video

sequence the most dominant colors up to a certain number are estimated using the

Generalized Lloyd Algorithm (GLA) [102]. The dominant colors are determined by

successive divisions of color clusters with the GLA algorithm in between, and then

merging of the color clusters.

First, all color vectors are assumed to be in the same cluster, i.e., the number

of clusters is 1. These color vectors are made up from the Y UV color components of

image points. The GLA measures the distances of color vectors to the cluster centers.

For each cluster, a color cluster center is computed by means of averaging. The color

vectors are grouped to the cluster center that has the smallest distance. The cluster

centers are updated accordingly. After grouping the color vectors into clusters, a

distortion score is computed. The distortion score is the sum of the distances of the

color vectors to the cluster centers. The grouping is repeated until the distortion

di�erence becomes negligible.

Then, each color cluster is divided into two new clusters by perturbing the

color center if the number of total clusters are less than a maximum, which is 2n.

The GLA is repeated as described above starting by the new cluster centers. We

observed that using 16 to 32 clusters gives acceptable segmentation performance. At

these quantization levels, under-segmentation due to low color precision is prevented.

As a �nal stage, the clusters that have close color centers are grouped to decide a

�nal number of dominant colors. To increase the speed of dominant color extraction

stage, only a single, subsampled input image in a shot with a high spatial sampling

rate is used.
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Figure 4.7: The �rst row is the original images, and the following rows are the quan-

tized images using the dominant colors. The number of dominant colors is set to 32,

16, 8, 4 respectively. The dominant colors are shown next to each image.
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Figure 4.8: Using uniformly distributed markers with one-at-a-time volume growing.

The dominant color descriptor is a part of MPEG-7 with minor di�erences

such as MPEG-7 has a smaller number of color bins, and it is based on Lab color

space. In case MPEG-7 descriptors available with the input video, the dominant color

descriptor is directly used to quantize the input video. In Fig. 4.7, the quantized

images are given.

4.3 Marker Assignment

A marker is the seed of a volume around it. After initial processing, the

smallest components of the spatiotemporal data structure are expanded from markers.

We will denote markers as mi, and call these small components as volumes Vi's. For

each marker mi, a volume and an index i is assigned. A marker is selected such that

it represent its local neighborhood as relevant as possible. Points that have small

color gradient magnitude are good candidates to represent their local neighborhood.

4.3.1 Uniformly Distributed Markers

The easiest way to assign markers is to distribute them uniformly in the spa-

tiotemporal data S disregarding the color distribution. The centers of identical poly-
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hedrons, i.e. cubes or prisms, are set as marker points. These polyhedrons constitute

the spatiotemporal data S all together. Uniformly distributed marker assignment

does not require any computation. At �rst, all points are marked as available. The

�rst available marker is selected along the scanning direction, i.e., �rst frame to last,

top to bottom, left to right. A volume is initiated and expanded according to color

distance criteria. All the points included inside the grown volume is assigned as

unavailable. Next marker is the �rst available marker in the rest of the S as demon-

strated in Fig. 4.8. The simplest interpretation of uniformly distributed markers is

all the points of the S are marker points. A more intricate marker assignment method

�rst divides the spatiotemporal data uniformly into polyhedrons, then �nds the point

that has the minimum color gradient inside a polyhedron. These minimum points are

the only available points in this case.

4.3.2 Minimum Gradient Points as Markers

Markers are selected among the low color gradient points. Let Q be the set

of all available points, i.e., it is all the points of S initially. The color gradient

magnitude jrS(x; y; t)j is computed for all spatiotemporal points, and the points

having local minimum gradient magnitude are chosen as markers mi. The color

gradient magnitude is de�ned as

jrS(x; y; t)j =
X

k=y;u;v

[jwk(x
�; y; t)� wk(x

+; y; t)j

+jwk(x; y
�; t)� wk(x; y

+; t)j
+jwk(x; y; t

�)� wk(x; y; t
+)j] (4.2)

where ()� and ()+ represent equal distances from the center point, i.e., x�1; x+1,

etc. A volume Vi is grown as will be explained in the following section, and all the

points of the volume is removed from the set Q

mi = argmin
Q
jrS(x; y; t)j ; Q = S � i[

j=1
Vj: (4.3)
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Figure 4.9: A fast marker selection method that �nds minimum gradient magnitude

points in the downsampled and sliced data using one-at-a-time volume growing.



126

Figure 4.10: The markers corresponding to the volumes that are bigger than 0:005%

of the total size of the S.

The next minimum in the remaining set is chosen, and selection process repeated until

no more available point remains in the S. Finding the minimum is a computationally

expensive process. Rather than searching the full-resolution spatiotemporal data S,

a subsampled version is used. More computational reduction is achieved by dividing

subsampled S into slices. The minimum is found for the �rst slice, and a volume is

grown, then the next minimum is searched in the next slice as illustrated in Fig. 4.9.

The extracted markers for the input video is presented in the Fig. 4.10.

4.4 Volume Growing

As the union of regions assembles 2D objects in an image, the union of vol-

umes constructs objects in the spatiotemporal data. In other words, a volume Vi

is a collection of the same object's projections, Rt
i, onto the frames of the video se-

quence. Volumes are the smallest components of the spatiotemporal data S and they

compromise homogeneous color and texture distributed within. Using markers and

evaluating various distance criteria, volumes are grown iteratively by grouping the

neighboring points of similar characteristics. By volume growing, all the frames of

an input video are segmented simultaneously. Moreover, no account of the quanti-

tative information about the regions and region boundaries need to be kept to track
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regions. From a theoretical viewpoint, volume growing is a superior set of region

growing methods.

There are several advantages of volume growing:

1. It solves the problem of tracking objects and correlating the segmented regions

between the consecutive frames. It enables information propagation.

2. It handles e�ectively the appearing and disappearing regions without registra-

tion diÆculties which require more computation and information gathering.

3. Particularly, it supplies an approximation of the translational motion of the

regions without going into exhaustive motion computations. By simply growing

volumes, important motion information is obtained.

4. Volume growing satis�es the spatial connectivity constraint of segmented points

without further processing.

5. It enables segmenting multiple frames at once.

6. It is computationally simple.

Suppose that we start with a single point p and wish to expand from that seed

point to �ll a coherent volume. Let's de�ne a distance measure 	(p; q) such that it

produces a low value if points p and q are similar and a high value otherwise. Now,

consider a point p that is adjacent to another point q. We can include point q into

point p's volume if distance 	(p; q) < � for some threshold �. We can then proceed

to the other neighbors of p and do likewise. Suppose that 	(p; q) < � and we added

pixel q to pixel p's volume. We can now similarly consider the neighbors of q and

add them likewise if they are similar enough. Of course, we now have unanswered

questions to address:

� How do we de�ne distance measure 	?
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� What threshold � do we use? Does it change or stay constant?

� How do we update volume attributes?

One obvious distance measure is to compare individual points intensities. In the

following sections, we discuss the above questions.

4.4.1 Linkage Methods of Volume Growing

In principle, volume growing methods are applicable whenever a distance mea-

sure and linkage strategy can be de�ned. Several linkage methods were developed,

they distinguished in the spatial relation of the points for which the distance measure

will be computed:

� Single-linkage volume growing: A point is joined to its neighboring points whose

properties are similar enough.

� Hybrid-linkage volume growing: Similarity among the points is established

based on the properties within a small neighborhood of the point itself instead

using the immediate neighbors only.

� Centroid-linkage volume growing: A point is joined to a volume by evaluating

the distance between the centroid of the target volume and the current point.

� Counterexamples: Yet another approach is to provide not only a point that

is in the desired volume but also counterexamples that are not in the volume.

This method allows us to use not only the similarity to the volume but the

dissimilarity to the exterior (the counterexample). It has the advantage of not

requiring a predetermined threshold; the threshold is simply the value at which

the candidate point becomes more similar to the outsider volume than to the

target volume. It does, however, require some prior knowledge to \train" the

system.
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Figure 4.11: The simplest implementation of single linkage algorithm compares each

candidate points with the initial marker.

4.4.2 Single-linkage Algorithm

When considering inclusion of a point p� into the growing volume V , the static

single-linkage technique compares back to the marker pointm by using 	(m; p�). We

now have the advantage of using a single basis for comparison across all points in the

volume. However, it means that the volume produced is very sensitive to the choice

of marker point.

One way of removing the above e�ect is to compare point p� to the neighboring

point p+ already in the volume using a distance function 	(p�; p+). A point is joined

to its neighboring points whose properties are similar enough. In this way, each point

that is already in the volume can bring in neighbors who are like it. One advantage

of this method is that it produces transitive closures of similarity. If p is similar

to q, and if q is similar to r, p and r end up in the same volume. Of course, this

method can cause signi�cant drift as one grows farther away from the original marker

point. Infact, the original seed is of no signi�cance once one grows out more than

one point as illustrated in Fig.4.12. It is possible to normalize the similarity with

the standard deviation of the color di�erence over a local neighborhood. Despite its
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Figure 4.12: Transitive single linkage method may cause leakage.

simplicity, single-linkage method is very sensitive to the noise. Although a smoothing

�lter improve the noise sensitivity, it would lead under-segmentation which is a more

severe problem.

The grown volumes using the single linkage algorithm are presented in Fig.

4.13. The output images are color coded for illustration purposes, each color corre-

sponds to a di�erent region thus a di�erent volume.

4.4.3 Dual-linkage Algorithm

Instead using immediate neighbors only, similarity among the points is es-

tablished based on the properties within a neighborhood of the point. Volumes are

enlarged by evaluating dual distance metrics.

First, a representative vector, called as centroid, is assigned to the new volume

that will be grown. This vector is composed of the color and other statistics of the

volume, and initially it is equal to the marker's feature vector. Two distances, 	�

and 	Æ, are measured for every candidate point. The 	� gives the distance between

the centroid and the candidate point. It serves as a \volume-wise" measure. The

second distance 	Æ determines the di�erence between the candidate point and an
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Figure 4.13: The segmented regions by single linkage volume growing method. Mark-

ers are selected from the minimum gradient points.

adjacent point to the candidate that is already included in the current volume. In

case there are more than one such adjacent points exit, the closest one is chosen

in the scanning direction. The second measure functions as a \point-wise" measure

between the outer shell of the volume and the candidate points, which explains why

we denoted the subscript as a shell.

Let p� be an unmarked candidate point that is adjoint to the current volume

V 's boundary, which is called as active shell. Let p+ be a point adjoint to p� and in

the active shell. Then, the volume-wise distance 	� is de�ned as

	�(m; p
�) =

X
k

j!k(m)� wk(p
�)j k : y; u; v (4.4)

where w(m) is the centroid feature vector, and w(p�) is the feature vector of p�.

Similarly, the second local distance 	Æ is de�ned as

	Æ(p
+; p�) =

X
k

jwk(p
+)� wk(p

�)j k : y; u; v: (4.5)
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where w(p+) is the feature vector of the point p+ that is already included in the

volume and adjacent to p�. Magnitude operator is chosen, yet the Euclidian distance

between the color elements can be utilized. If the distances 	� and 	Æ are smaller

then �� and �Æ, the point p� is included in the volume. The neighboring point p�

is set as an active shell point, and the feature vector for the marker is updated by

averaging rule. In the next cycle, the neighboring pixels of the active shell are probed.

Volume growing is repeated either until no point remains in the spatiotemporal data,

or no more expansion occurs.

A similar approach to distance measure involves not only comparison to a sin-

gle point or to a volume statistic, but by calculating cumulative di�erences as one

follows a path from the marker to the candidate. In other words, if point p+ is a

neighbor of marker m, and candidate point p� is a neighbor of p�, instead of using

	�(m; p
�) or 	Æ(p

+; p�), we can use 	Æ(m; p
+) + 	Æ(p

+; p�). This is equivalent to

�nding the minimum-cost path from m to p� and using this as the basis for the ad-

dition or rejection of point p�. However, such an evaluation increases computational

load.

The computed distances are compared with the thresholds. A volume-wise

threshold �� limits the variation of the features, i.e., color variation in the volume.

The point-wise threshold �Æ prevents crossing over the edges. The global and local

thresholds are adaptable to the input video using the color histograms. These his-

tograms, hy(l), hu(l), and hv(l) are obtained in the �ltering stage. The mean and

variance in each histogram are computed by

�k =
1

L

X
l

hk(l) �2k =
1

L

X
l

(hk(l)� �k)2; (4.6)

where color value is in the range 0 � l < L, and L is equal to 256 for an 8-bit

coded channel. Since, the variance indicates modalities of color histogram, a high

variance value represents multi-modal color distribution, likewise high spatial texture

and multiple regions. Small values suggest a smooth color distribution and fewer
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Figure 4.14: The regions obtained using dual-threshold volume growing.

regions. In general, with the increasing number of regions in an image, the color

variance becomes larger. If the value of the variance is higher then there should be

more regions, thus, a smaller threshold should be chosen. Thus, the variance and

threshold are reciprocal. Dynamic color range � is another parameter that has an

e�ect on the thresholds. It is de�ned for a channel as

� = c2 � c1 (4.7)
c1Z
0

hk(l) dl =

1Z
c2

hk(l) dl = 0:05 (4.8)

where c1 and c2 are constant numbers. As the dynamic color range changes, the dis-

tance between color clusters of the histogram varies assuming the number of clusters

remains same. Therefore, the thresholds should be scaled with the dynamic range.

There is a perceptive minimum for the thresholds since human vision is not very

sensitive to small color variations. In conclusion, we designed the following formula
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for the volume-wise threshold

�k = max

 
�k
4�2k

; 8

!
! �� =

X
k

�k (4.9)

We aggregate three thresholds of color channels in the same summation term on

account of using a single distance function 	� as in Eq.4.4,

The point-wise threshold �Æ limits the inclusion of a point even it satis�es the

volume-wise distance constraint. It is proportional to the average color discontinuity

between the neighboring points. Speci�cally, the average edge magnitude determines

the point-wise threshold

�Æ = �
1

M

X
k

X
p

wk(p; e) (4.10)

where M is the total number of points in a frame, k is the color channel, and wk(p; e)

is the edge magnitude at point p in channel k. The scaling constant � is set to 0.95

since not all the points correspond to an edge. The above statistics are derived from

a single frame of the video.

For a marker point m, the growing is accomplished by evaluating the adjoint

points distances 	�(m; p
�) and 	Æ(p

+; p�) in a three dimensional 6-points neighbor-

hood. Those points are (x+1; y; t), (x�1; y; t), (x; y+1; t), (x; y�1; t), (x; y; t+1),

(x; y; t�1) where the center point is (x; y; t). If the distances are smaller than their

corresponding thresholds 	�(m; p
�) < �� and 	Æ(p

+; p�) < �Æ, the new point p� is

included in the volume V and set as an active shell point. The feature vector of the

volume is updated by the new average. The volume growing is carried on until no

more adjoint point satis�es the distance criteria. Then, a new marker is selected from

the remaining available points, and growing is repeated. The segmented images using

the dual-linkage method are presented in Fig. 4.14.

4.4.4 Centroid-linkage Algorithm

Another approach is comparing candidate point p� to the volume features so

called as \centroid". Initially, a volume consists of pixelm alone, so pixelm dominates
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Figure 4.15: Centroid-linkage algorithm compares a candidate point with the centroid

that is equal to marker initially. The pink points in the last �gure are included at

the �nal step.

the volume feature. As the volume grows, aggregated statistics are computed, and any

new point p� which may be added to the volume is compared not to point p+ or but

to these aggregated statistics. One simple such statistic is to keep an updated mean

of the volume points. As each new point is added, the mean is updated. Although

gradual drift is still possible, the weight of all previous points in the volume act as a

damper on such drift as illustrated in Fig.4.15. A similar technique is to initialize the

volume with not only a single point but a small set of points to better describe the

volumes statistics. With such initialization, not only a volume mean is suggested but

the variance as well. Candidate points can be compared to the volume mean with

respect to the volume variance. The variance can be computed by sampling a small

area around the initial marker point.

We implemented centroid-linkage volume growing approach by one-at-a-time

marker selection. After a marker point m is selected, a volume centroid mean vector

is initialized using markers features. Then in a 6-points neighborhood, the adjoint
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Figure 4.16: The histograms are used to determine color modalities of video to decide

thresholds.

points p� are evaluated. Color distances 	(m; p�)'s are computed as in Eq.4.4,

	(m; p�) =
X
k

j!k(m)� wk(p
�)j k : y; u; v: (4.11)

If the color distance 	(m; p�) is less than a threshold �, the point p� is included

in the volume, assigned as an active shell point, and the centroid vector is updated

accordingly. In the color distance equation, a magnitude norm is preferred rather

than the di�erence square L2 norm. Our experiments showed that using L2 norm

does not improve the segmentation performance signi�cantly, although it takes more

processing time.

As an alternative to the previous distance formulation, we also developed a

logarithmic scaling based distance measure. The dominant colors are used if they

are available. In case quantization of the color spectrum is not feasible due to very

low color dynamic range of the input, we estimate the number of possible color bins

for each color channel. This is accomplished by using color histograms as mentioned

before.

The color histograms are smoothed within 5-tap �lters, and the dynamic ranges
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�k, k = y; u; v are computed. The local maxima of the histograms are obtained for

each channel. We denote the local maxima as hk(l
�
i ). Here, hk() is the color histogram

of the channel k, and l� is the ith local maximum. Note that there are multiple local

maxima for a channel such that li < li+1 and i = 1::Nk for color channel k where Nk

is the number of maxima in this channel. Each of these local maxima is assigned to

a color bin bik. For a bin b
i, two numbers l�i and l+i that correspond to the distances

to adjoint bins i+1 and i�1 are computed

l�i =
1

2
(li � li�1); l+i =

1

2
(li+1 � li) (4.12)

After a marker m is chosen, the centroid for the current volume is assigned using the

markers feature vector. Using marker point, three lengths ly, lu, lv are selected

lk =

8><>: l�i l�i � l�i < wk(m) � l�i

l+i l�i < wk(m) � l�i + l+i
(4.13)

We devised the following Lorentzian-based measure as the distance between the cen-

troid and the candidate point p�

	(m; p�) =
X
k

Nk log(1 +
jwk(m)� wk(p

�)j
lk

) ; k = y; u; v: (4.14)

We scaled the channel di�erences jwk(m) � wk(p
�)j with the corresponding lengths

lk's for normalization. The addition term keeps the logarithmic distance measure

positive. The Lorentzian term is sensitive enough towards the small color di�erences

while it prevents the computed distance from inating for a slightly large color dif-

ference in a single channel although the color di�erences in the other channels are

very small. Considering a channel that has more distinctive dominant colors provides

more information for segmentation, the channel distances are weighted by the corre-

sponding Nk's. In the implementation, the divider lengths lk's are integrated with

the weight terms for computational simplicity. Then, the distance threshold is set as

� = (Nr +Ng +Nb) (4.15)
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Figure 4.17: The segmented regions using the centroid-linkage method.

which means that the wy(p
�), wu(p

�), wv(p
�) are all within the same color bins with

the centroid. Thresholds are calculated for each seed pixels after they are selected.

The results for the centroid-linkage algorithm are shown in Fig. 4.17.

4.4.5 Modes of Volume Growing

Volume growing can be carried out either by growing multiple volumes simul-

taneously, or expanding only one single volume at a time. Furthermore, the expansion

itself can be done either in an intraframe - interframe switching fashion, or a recursive

outward growing style.

� Simultaneous growing: After all marker points are determined, volumes are

grown simultaneously from each marker. At a growing cycle, all the existing

volumes are updated by examining the neighboring points to the active shell of

the current volume. In case a volume is stopped growing, an additional marker

is selected. This marker is an adjoint point to the boundary of the stopped
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Figure 4.18: On the left: volume growing by intraframe-interframe switching, on the

right: recursive di�usion. As visible, recursive di�usion grows volumes as an inating

balloon, whereas switching method �rst enlarges a region in a frame than spreads this

region to the adjoint frames.

volume. A volume is initialized for the new marker point. Simultaneous growing

is done until no point remains in the S. Although simultaneous growing is very

fast and straightforward, it divides homogeneous volumes into multiple smaller

volumes, thus a volume merging stage is necessary after volume growing.

� One-at-a-time growing: At each cycle, only a single marker point is chosen,

and a volume is grown around this marker. After the volume stopped growing,

another marker in the remaining portion of the spatiotemporal data is selected.

Selecting new markers continues until no more point remains in the S. An
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advantage of one-at-a-time growing is that it can be implemented by recursive

programming. However, it demands more memory to keep all the pointers. It

generates homogeneous volumes, thus do not need a merging stage.

� Recursive di�usion: Volume growing links the neighboring points to the vol-

ume's current boundary points, which constitutes an \active shell". For the

spatiotemporal data, those points are de�ned as either 6 or 26 adjoint points

(orthogonal neighbors and orhtogonal/diagonal neighbors). In recursive di�u-

sion volume growing mode, the neighboring points to the active shell are evalu-

ated disregarding whether they are in the same frame with the active shell point

or not as illustrated in Fig. 4.18. After a point is included within a volume,

the point becomes a point of the active shell as long as it has a neighbor that is

not included in the same volume. By updating the active shell as described, the

volume is \di�used" outward from the marker. Instead of using only adjoint

points, other points within a local window around the active shell point can be

used in di�usion as well. However, in this case the computational complexity

increases, moreover, overall compactness of the volume shape may deteriorate.

� Intraframe-interframe switching: Volumes grown using recursive di�usion tends

to be topologically non-compact by having several holes and ridges within. Such

volumes usually generate unconnected regions when it is sliced frame-wise, i.e.,

a volume could have multiple separate regions in a frame taken from the spa-

tiotemporal data. Intraframe-interframe switching proposes a better solution

in that sense. The connected shapes are obtained by applying the di�usion

mechanism �rst within the same frame to grow a region, then propagating it to

the previous and next frames. The grown region is assigned as the active shell

for the neighboring frames. As a result, each frame-wise projection of a volume

will be a single connected region, and the volume will have a more compact

shape overall.



141

(a)

(b)

Figure 4.19: (a) Small volumes are removed and the other volumes are inated to �ll

empty areas. (b) Volume-wise similarity is evaluated to merge a small region into one

of its neighbors.

4.4.6 Volume Re�nement

After the growing stage, the spatiotemporal data S is divided into multiple

volumes. Some of these volumes are negligible in size or very elongated due to the

�ne texture and edges. For much the same reason, they e�ect the computational load

of the clustering algorithm. Moreover, some edge points and singularities may not be

grouped into any of the volumes after the growing stage.

A simple way of clearing small and elongated volumes is marking their points

as ungrouped (Fig.4.19-a). The ungrouped points that are attached to a valid volume

boundary are transferred into an active shell. An active shell point is then included
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in the most color similar volume next to it. A relaxed color threshold can be utilized,

or inclusion can be done without using any thresholds. The active shell is updated,

and inclusion is iterated until no more ungrouped point remains.

Alternatively, a small volume can be merged into its neighboring most similar

volume as a whole (Fig.4.19-b). In this case, similarity is de�ned as a combination

of the mutual surface, color distance, mutual volume, and compactness ratio. Our

arguments on the small volume similarity are summarized as

� The resultant volume should have a more compact shape rather than having

more elongated to avoid leakage problems. In general, unifying a small volume

into its neighbor that has the largest mutual boundary prevents from elongation.

Compactness scores are computed to verify each possible merge satis�es the

shape constraint.

� Image irregularities and relatively high motion often cause similar points to be

grouped into separate small volumes. Unifying a small region with its neighbor

that has similar color attributes to improve color consistency rather than unify-

ing with a dissimilar one. Thus, color distance is incorporated in the evaluation.

� Around a small volume, the probability of that another small volume exists is

relatively high. Along the edges, multiple tiny volumes may grow easily. If

we unite a small volume with one of its neighbor that is also small, we would

increase both of their sizes, and eliminate two small volumes at the same time.

The combination of the above properties is achieved by using an ordered list

approach. First, all the small volumes are determined. This information is already

available after the volume growing stage. The neighboring volumes Vj's of a small

volume Vi are found, and mutual boundary ratios �br(i; j), color distances �cd(i; j),

mutual sizes �si(i; j), and compactness ratios �cr(i; j) are computed as

�si(i; j) = si(i) + si(j) (4.16)
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Figure 4.20: The regions obtained using centroid-linkage volume growing after volume

re�nement.

�cd(i; j) =
X

k2(y;u;v)

jmk(i)� mk(j)j (4.17)

�br(i; j) =
bo(i) + bo(j)� bo(i \ j)

bo(i)
(4.18)

�cr(i; j) =
co(i \ j)

co(i) + co(j)
(4.19)

where si is the size of the volume, bo is the boundary, mk is the color mean corre-

sponding to channel k, and co is the compactness score. More explanation about the

above parameters can be found in the following descriptors section. These attributes

are ordered in separate lists. The lists are ordered as

�si(i; j) > �si(i
0; j 0) =) rsi(i; j) > rsi(i

0; j 0) (4.20)

�cd(i; j) > �cd(i
0; j 0) =) rcd(i; j) < rcd(i

0; j 0) (4.21)

�br(i; j) > �br(i
0; j 0) =) rbr(i; j) < rbr(i

0; j 0) (4.22)

�cr(i; j) > �cr(i
0; j 0) =) rcr(i; j) > rcr(i

0; j 0) (4.23)
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(4.24)

where r is the ranking function, i.e. the rank of the volume combination Vi; Vj in the

corresponding attribute list. From these lists, a score �(i; j) is computed for possible

volume merges with respect to their ranks. The score �(i; j) is the summation of the

ranks corresponding to the pair (i; j) such that

�(i; j) = rsi(i; j) + rcd(i; j) + rbr(i; j) + rcr(i; j): (4.25)

The neighboring volume V � that gives the maximum score is chosen, i.e.,

V �
i = arg

Vj

max �(i; j) (4.26)

the small volume Vi is merged into V �
i , and the attributes are updated. Although

this technique has more formulation, it is faster than the point-wise expansion, since

it uses a few statistics instead of dealing with thousands of points. Yet, it requires

accurate initial volumes. We determined that a minimum size 0.5% of the total size

of S is adequate as a minimum volume size threshold for most applications. Fig. 4.20

shows the volumes after the re�ning stage.

4.5 Analysis of Volumes

Volume growing provides color homogeneous parts of the video. On the other

hand, most video objects, i.e. cars, contain multiple parts that may have di�erent

color statistics although those parts have consistent motion. Thus, our next goal is

to extract motion information of volumes to construct motion consistent objects.

We employ descriptors to capture various aspects of the volumes. These de-

scriptors characterize motion, shape, and color characteristics, as well as they evaluate

mutual relations of the volumes. The volumes are grouped with respect to the de-

scriptors at the clustering stage in order to assemble the objects.

The �rst motion related attribute of a volume is its trajectory.



145

Figure 4.21: A trajectory is the connected frame-wise center of masses of a volume.

4.5.1 Extraction of Trajectories

Motion trajectory is a high level feature associated to a moving region, de�ned

as the localization of one of its representative points such as its centroid as simulated

in Fig. 4.21. The centroid can be chosen as the center of mass of a volume's frame-

wise projection. Another centroid de�nition is the intersection of the longest line

within the region and another line that is longest in the perpendicular direction. We

used the center of mass as the centroid since that can be extracted as a volume being

grown, besides, the second de�nition is hard to compute. For each volume Vi, a

trajectory Ti(t) = [Xi(t); Yi(t)]
T is extracted by computing the frame-wise averages

of volume i's coordinates

Ti(t) =

264 Xi(t)

Yi(t)

375 =
264 1

R(i;t)

P
x

1
R(i;t)

P
y

375 ; (x; y) 2 Rt
i: (4.27)

Above, Rt
i is the corresponding region to the volume Vi at frame t. The R(i; t) is the

area of the region Rt
i. The sum of the areas time-wise gives the volumes size

si(i) =
X
t

R(i; t); (4.28)
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Figure 4.22: Sample trajectories of the child and foreman video for 20 frames.

where si(i) is the size of the volume i. Each region R
t
i has a boundary B(i; t). Sample

trajectories are shown in Fig. 4.22.

An important property of the motion trajectory is that it approximates the

translational motion of the volume it belongs in most of the cases. This motion is

the easiest to be perceived by the human visual system, for much the same reason

it is the most discriminative in object recognition. In addition, it is the part of the

parameterized motion that can be estimated more accurately. A motion analyzer

performs more robust by utilizing translational motion information rather than using

rotational motion only. Motion trajectory enables to comprehend the motion of a

region between the frames without involving in dense motion vector computation.

Such an information can be used to initialize motion parameters in motion estimation

or parameterized model �tting processes to accelerate computation.

Motion Trajectories as De�ned in MPEG-7

Motion trajectory is also described as a part of MPEG-7. However, MPEG

standards do not propose any method to obtain such trajectories. The SpatioTem-

poralLocator describes spatiotemporal regions (Fig.4.23) in a video sequence and pro-

vides localization functionality especially for hypermedia applications. It consists of
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Figure 4.23: Spatiotemporal regions de�ned as in MPEG-7.

FigureTrajectory and ParameterTrajectory. Moving regions in multiple frames are de-

scribed by one or several sets of reference region and motion. FigureTrajectory and

ParameterTrajectory describe each set of a reference region and a motion. The two

description schemes are selected according to moving object conditions. If a moving

object region is rigid and the motion model is known, ParameterTrajectory is appropri-

ate. For non-rigid moving object region, FigureTrajectory is appropriate. The usage

depends on applications.

FigureTrajectory describes a spatiotemporal region by trajectories of the rep-

resentative points of a reference region. Reference regions are represented by three

kinds of �gures: rectangles, ellipses and polygons. For rectangles and polygons, the

representative points are their vertices. Although there are four vertices for a rect-

angle, only three of the four are described because the rest can be easily calculated.

For ellipses, three vertices of their circumscribing rectangles are selected as the rep-

resentative points. The trajectories are interpolated using the TemporalInterpolation

descriptor. For this descriptor, the reference region description is omitted because

the TemporalInterpolation descriptor can directly express the representative points of

�gures.
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mean of color k my(i)
1

si(i)

P
wk(p); p 2 Vi

size si(i)
P

tR(i; t)
boundary bo(i)

P
tB(i; t)

compactness co(i)
1

ex(i)

P
t

R(i;t)
(B(i;t))2

vertical translation vt(i) Yi(1)�Yi(tT )
horizontal translation ht(i) Xi(1)�Xi(tT )
trajectory length tl(i)

P
t jTi(t)�Ti(t�1)j

existence ex(i)
P
nt; nt = 1 R(i; t) 6= 0

change detection c(i)
1

si(i)

P
pwc(p); p 2 Vi

target color tc(i)
1

si(i)

P
pwtc(p); p 2 Vi

motion parameters pm(i) fa1; a2; :::; a6g

Table 4.2: Volume's quantitative descriptors

ParameterTrajectory describes a spatiotemporal region by a reference region

and trajectories of motion parameters. Reference regions are described using the Re-

gion Locator Descriptors. Motion parameters and parametric motion model specify a

mapping from the reference region to a region of an arbitrary frame. The trajectories

of the motion parameters are interpolated and described using the TemporalInterpo-

lation descriptor.

4.5.2 Quantitative Descriptors

Descriptors are the numerical scores that interpret various attributes of a vol-

ume. These attributes include motion, shape, color (and texture if it is utilized),

change detection, and application speci�c features such as skin color, etc. We denoted

these scores as (i) and �(i; j) for quantitative and relative descriptors respectively.

We introduced and tested several descriptors.

Quantitative descriptors (i)'s evaluate a volumes self properties such as its

size, surface, compactness, motion as summarized in the Table 4.2. Some of the

quantitative descriptors are basic. The descriptor si(i) is the size of the volume Vi.

The my(i), mu(i), and mv(i) are the averaged values of the corresponding color
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channels of a volume. The boundary bo(i) is the number of points on the surface of

a volume. The descriptor ex(i) counts how many frames of the sequence the volume

Vi appears. We de�ne compactness co(i) as the ratio of its volume to its boundary

square

co(i) =
1

ex(i)

X
t

R(i; t)

(B(i; t))2
(4.29)

In 3D, a sphere has the largest compactness score. On the other hand, in the spa-

tiotemporal data the most compact shape is a cylinder along the time axis since

we want the frame-wise projections of a volume to be compact but not its overall

shape. To compensate for the radius, the boundary value is squared as above. The

more a volume elongates in its frame-wise projections, the lower its compactness score

becomes. The compactness score is sensitive to the boundary ripples, i.e., a rough

surface.

Some motion descriptors of a volume are based on the volume trajectory. The

descriptor tl measures the length of the trajectory

tl(i) =
1

ex(i)

X
t

jTi(t)�Ti(t�1)j: (4.30)

Usually, stationary objects have shorter trajectory lengths. Two other descriptors

�vt(i) and �ht(i) compute the vertical and horizontal displacement between the �rst

and the last frames that a volume exists between. One motion related descriptor set

is the aÆne motion parameters of the volume instead of its trajectory

pm(i) =

264 a1 a2

a4 a5

375
264 x

y

375+
264 a3

a6

375 (4.31)

These parameters are computed for a volume at each frame. Other quantitative

descriptors are the change detection score cd and the skin color feature score sc.

These are de�ned in the following sections.
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mean of T. distance ��(i; j)
1

�ex(i;j)

P
�t(i; j)

variance of T. distance ��(i; j)
1

�ex(i;j)

P
(�t(i; j)� ��(i; j))

2

maximum T. distance �xt(i; j) max�t(i; j)
directional di�erence �dd(i; j)

P jTi(t)�Ti(t�1)�Tj(t)+Tj(t�1)j
parameterized distance �pm(i; j) < Ai � Aj; Ai � Aj >
compactness ratio �cr(i; j) [co(i \ j)][co(i) + co(j)]

�1

mutual boundary ratio �br(i; j) [bo(i [ j)][bo(i)]�1
color di�erence �cd(i; j)

P
k jmk(i)�mk(j)j

coexistence �ex(i; j)
P

t nt; nt=1 (R(i; t) 6=0) \ (R(j; t) 6=0)
neighborhood �ne(i; j) 1 co(i \ j) > 0

Table 4.3: Relational descriptors of a volume pair Vi, Vj

4.5.3 Relational Descriptors

The relational descriptors evaluate \relative" similarity between a pair of vol-

umes. As quantitative descriptors, they characterize motion, shape, and color aspects.

The motion related relative descriptors utilize the mutual trajectory distance. This

distance �t(i; j) is calculated between the trajectories Ti(t) and Tj(t) for frame t by

the equation

�t(i; j) = jTi(t)�Tj(t)j: (4.32)

The mutual trajectory distance is used to obtain the motion relative descriptors.

The mean of the trajectory distance �mt(i; j) measures average distance between the

volumes centroids

��(i; j) =
1

�ex(i; j)

X
�t(i; j) (4.33)

in which the summation term is applied to frames in which both of the volumes exist.

In the above equation, �ex(i; j) is the number of the frames that both volumes Vi

and Vj exist. The variance of the trajectory distance ��(i; j) indicates consistency

between the motions of two volumes

��(i; j) =
1

�ex(i; j)

X
[�t(i; j)� ��(i; j)]

2: (4.34)
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A small variance score means two volumes have almost similar translational motion,

and a big variance reveals volumes having di�erent motion, i.e., getting away from

each other, moving in the opposite directions, etc. The maximum distance �xt(i; j)

quanti�es how far two volumes gets away from each other. Some exceptions of the

motion descriptors are a large background since its trajectory is located on the center

of the frames mostly, and a highly concave volume that has a trajectory falls outside

its boundary. To distinguish volumes that have small motion variances but opposite

motion directions, e.g., two volumes turning around an axis, the directional di�erence

�dd(i; j) is de�ned.

Motion of a volume can also be characterized by the model parameters pm(i).

The parameters of two volumes are utilized to derive a relational motion similarity

descriptor �pm(i; j). Motion parameters are arranged in a vector to calculate their

di�erence

�pm(i; j) =
X
t

jAt
i � At

jj (4.35)

where At is the vector of motion parameters of frame t

At = [a1 a2 a3 a4 a5 a6]t: (4.36)

The parameter distance is de�ned as

jAi � Ajj =
24cR X

n=1;2;4;5

(ai;n � aj;n)2 + cT
X
n=3;6

(ai;n � aj;n)2
351=2 (4.37)

where the multipliers are selected as cR � cT to weight the rotation/zoom di�erence

proportional with the translation di�erence.

Shape information is captured as relational descriptors too. The compactness

ratio �cr(i; j) of a pair of volumes is the amount of the change on the total compactness

before and after the two volumes are merged

�cr(i; j) =
co(i \ j)

co(i) + co(j)
: (4.38)
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Figure 4.24: Utilizing c(i) empowers moving object detection.

A small �cr(i; j) means the merging generates a less compact object which is not

good. By merging, we aim to obtain more compact objects since natural objects

tends to be compact. Another shape related descriptor �br(i; j) calculates the ratio

of mutual boundary of two volumes Vi and Vj to the total boundary of volume Vi

�br(i; j) =
bo(i \ j)
bo(i)

: (4.39)

In clustering, a volume pair with high �br(i; j) is preferred. Except an enclosing back-

ground, the higher values of mutual boundary ratio is a sign of higher compatibility.

The color di�erence descriptor �cd is the sum of the di�erence between the color

means. Other descriptors are �ex which is the number of frames that both of the

volumes exist, and �ne(i; j) the neighborhood descriptor that is equal to 1 if volumes

have a mutual boundary. The relational descriptors are summarized in Table 4.3.

4.5.4 Change Detection Mask in Segmentation

The frame di�erence and change detection mask are among the widely used

features in computer vision. Blending motion compensated change detection masks

with additional video features improves the performance of object segmentation for
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Figure 4.25: Upper row: the point-wise change detection masks wc(p) for frames from

foreman, akiyo, and newsroom video, black means a changed point. Lower row: the

thresholded descriptor.

certain applications. After the CDM scores wc(p) are found as discussed in the pre-

vious chapter and the volumes Vi's are obtained, the CDM based descriptor c(i) is

computed as illustrated in Fig.4.24. For each volume, the number of the changed

points is determined while compensating for trajectory motion of the volume

c(i) =
1

si(i)

X
t

X
x;y2Rt

i

wc (x�Xi(t); y � Yi(t); t) : (4.40)

The change detection scores of the volumes, c(i), are uniformly normalized to [0; 1]

range. Our tests show that volumes having c(i) values higher than 0:2� 0:3 often

correspond moving regions. We present volumes with thresholded change detection

scores in Fig.4.25.
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Figure 4.26: Skin colors in the Y UV color space from di�erent viewpoints.

4.5.5 Color Detection Mask

Color is a powerful descriptor that has practical use in the detection of objects

exhibiting certain color attributes. The aim of the color detection mask is to classify

points of the input video as target color and non-target color points, i.e., in human

face locating skin and non-skin point.

The use of color information has gained increasing attention �rst in the face

locating problem. Some recent publications that have reported this study include

[75], [25]. We generalized face locating approaches to evaluate whether a point is in

a given target color set or not. We compute the target color concentration of each

volume after growing volumes. For a volume Vi, the number of points in the target

color set is found

tc(i) =
1

si(i)

X
t

X
x;y2Rt

i

wtc (x; y; t) : (4.41)

Human skin has certain color characteristics. As a special case, we adapted

a human skin color map. We have found that a skin-color can be identi�ed by the

presence of a certain set of color values that is illustrated in the Y UV space as shown
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in Fig. 4.26. The color ranges are sculptures as

wtc(p) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

1

j tan�1(y+1:77u
y+1:40v

)� �
4
j< �

8
^

j tan�1(y�0:34u�0:72v
y+1:40v

)� �
6
j< �

18
^

j tan�1( y+1:77u
y�0:34u�0:72v

)� �
5
j< �

15
^

y + 0:48u+ 0:23v > 20

0 else

(4.42)

where y; u; v are the color values of the point p. The wtc(p) is assigned as a skin

color point if the color values at p fall inside their respective ranges. These ranges

are adapted from the RGB color space to the Y UV space by exhaustive tests. The

above conditional formula do not require any computation; it is implemented as a

look-up table.

4.5.6 Feature-based Motion Estimation

A crucial egg-or-chicken problem of motion based segmentation is \should the

region of support be obtained �rst by color segmentation then motion �eld is esti-

mated, or �rst motion �eld is obtained then region of support is determined?" Volume

growing provides all the region of supports, i.e. frame-wise projections of volumes,

and approximation of the translational motion. Therefore, volume growing improves

the above problem by supplying the region of supports and an initial estimation of

motion at the same time.

The motion of volumes can be represented by parameterized models. These

parameters are found by �tting a motion model, preferably aÆne or higher, to motion

vectors. Motion vectors are estimated for a limited number of con�dence points in

each region of support. In comparison, an optical ow method would be restricted

to the small motions, moreover it is intensity sensitive, and also computationally

expensive. A dense block-matching method would be infeasible. On the other hand,

using selected feature points has advantage of preventing from the aperture problem,

and it is not computationally intensive.
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Figure 4.27: Extracted feature points with respect to Eq. 4.44.

Feature Points

A feature point should have higher spatial energy than the other points since

it will be used in block matching, and higher spatial energy point give more accurate

estimate in matching. A simple spatial energy function 
(p) is de�ned as a variant

of the local texture


(p) =
X
k

[maxwk(q)�minwk(q)]; q 2 }(p) (4.43)

where }(p) is a local window around the point p. However, the above de�nition does

not quantify the energy accurately. We utilized the following variance based energy

function


(p) =
X
k

X
q

(wk(q)� ��k)
2; q 2 }(p) (4.44)

Here, ��k is the mean of the color channel k in the window }(p). After the spatial

energy is computed in the region Rt
i, the points of R

t
i are ordered in a list. The �rst

in the list is assigned as a feature point pf(i; t), and a spatial window around it is
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cleared. Then, the next available point in the list is chosen. In our simulations, we

used 5 � 5 local windows. A certain number of such feature points pf(i; t), around

50, are determined for each region Rt
i of the volume Vi. Fig. 4.27 shows the feature

points selected for the corresponding images.

Cross Search Block-Matching

Cross search is a suboptimal implementation of exhaustive search block match-

ing technique. This algorithm was introduced by Ghanbari [88]. The basic idea is

still a logarithmic step search, however, the main di�erence between this and the

logarithmic search method presented before is that the search locations are the end

points of a diagonal cross \�" rather than a regular \+". The algorithm may be

described as follows:

� Step 1 : The center block is compared with the current block and if the distortion

is less than a threshold, the algorithm stops. Distortion is the color di�erence

between the blocks.

� Step 2 : Pick the �rst set of points in the shape of a \�" around the center.

Move the center to the point of minimum distortion.

� Step 3 : If the step size is bigger than 1 halve it and repeat step 2, otherwise

go to step 4.

� Step 4 : If in the �nal stage the point of minimum distortion is the bottom left

or the top right point, then evaluate distortion at 4 more points around it with

a search area of a \+". If, however, the point of minimum distortion is the top

left or bottom right point, evaluate the distortion at 4 more points around it in

the shape of a \�".

The above algorithm is demonstrated in Fig. 4.28. The cross search algorithm

requires 5 + 4 log(2h) comparisons, where h is the largest allowed displacement. The
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Figure 4.28: The cross search algorithm �nds the suboptimal motion vector.

algorithm has a low computational complexity. It is, however, not the best in terms

of compensation. By cross block matching, we found the motion vectors m(pf ) of the

feature points pf determined in the previous section. The search range is chosen as

�8 points, and the search center shifted with respect to the trajectory motion.

Model Fitting to the Motion Vectors

Using the above technique, motion vectors are estimated for the feature points.

These vectors are �tted to an aÆne motion model by minimizing a Lorentzian based

error term. The Lorentzian term converts minimization problem to a robust estima-

tor. Robust estimation enables to detect and reject the measurement outliers that

violate the motion model.

Given the motion vectors m(pf ) for a region R
t
i, we want to recover an aÆne

model u(pf ; a1; ::; a6) that minimizes

J(m; u) =
X
pf

log(1 + [m(pf )� u(pf)]2) (4.45)
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=
X
pf

log(1 + [mx(pf)� a1xf � a2yf � a3]2

+[my(pf)� a4xf � a5yf � a6]2) (4.46)

where mx(pf ) and my(pf) are the vertical and horizontal components of the motion

vector, and pf is (xf ; yf ; t). We build robust estimator by using downhill simplex

minimization. An iterative continuation method is used in which the previously

estimated motion models u(pf) is used as the observation of the next iteration.

4.6 Clustering Volumes into Objects

Clustering is the unsupervised classi�cation of volumes into objects. The vol-

umes Vi's are clustered into objects using their descriptors. The clustering problem

in general has been addressed in many contexts and by researchers in many disci-

plines. Di�erent approaches to clustering data can be categorized as hierarchical and

partitional approaches. Hierarchical methods produce a nested series of partitions

while a partitional clustering algorithm obtains a single partition of the data. Merg-

ing the volumes in a �ne-to-coarse manner is an example to hierarchical approaches.

Grouping volumes using adaptive k-means method in an coarse-to-�ne manner is an

example to the partitional approaches as illustrated in Fig. 4.30. We implemented

both of these methods. The frames from the original videos are given in Fig. 4.29 to

give an idea about the underlying motion in each sequence.

4.6.1 Fine-to-Coarse Hierarchy

Now, we have the smallest components of the video and their attributes. The

next task of video segmentation is �nding the most similar volumes that forms the

same object using their descriptors. A �ne-to-coarse hierarchical merging method

is appropriate for this purpose. In this approach, determination of most similar

volumes is done iteratively. At each iteration, all the possible volume combinations
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Figure 4.29: The 1st, 8th, 16th and 24th frames from the test sequences.
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Figure 4.30: Coarse-to-�ne (adaptive-k, GLA, quad-tree) and �ne-to-coarse cluster-

ing. The �rst approach divides the volumes into certain number of clusters at each

time, the second merges a pair of volumes at each level.

are evaluated. The pair having the highest similarity score are merged and a�ected

descriptors are updated. The iterative nature of the algorithm enables an hierarchical

clustering.

From another point of view, the semantic information is being hunted at this

stage of the segmentation. Therefore, we have to decide which criteria dictate the

similarity of volumes, and which volumes of the video form a semantic object. Our

decision should include only the available information, i.e. volume descriptors. The

following observations are made on the similarity of two given volumes:

1. Two volumes are similar if their motion is similar. In other words, volumes

having similar motion construct the same object. A stationary region has high

probability of being in the same object with another region that is stationary,

i.e., a tree and a house in the same scene. We already measured the motion sim-

ilarity of two volumes in terms of motion based relational descriptors ��(i; j),

�dd(i; j), �pm(i; j), ��(i; j), and �xt(i; j). These descriptors should be incor-

porated in the similarity de�nition. However, without using further intelligent
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models, it is not straightforward to distinguish motion similar objects. Such

intelligence includes but not limited to neural networks, Markov models as in

human recognition.

2. Objects tend to be compact. A human face, a car, a ag, a soccer ball are

compact objects made by smaller volumes. For instance, a car in a surveillance

video is formed by separate elongated smaller regions. Shape of a volume gives

clues about its identity. We captured shape information in the descriptors

�cr(i; j) and �br(i; j) and also volume boundary itself. Whereas, compactness

needs deliberate employment. If a volume is enclosing another volume, their

merge will increase compactness whether these two volumes correspond to same

the object or not. As a counter example to compactness, we can consider

cloud formations, walking person, etc. To improve the success of shape related

descriptors, application speci�c criteria should be used, i.e., a human model for

indoors surveillance and videoconferencing.

3. Objects have connected parts. This is obvious for most of the cases, an animal,

a car, a plane, a human, etc., unless an object is visible only partially. We be-

gin evaluation of similarity with the volumes that are neighbors to each other.

Neighborhood constraint is useful, and yet, can easily deteriorate the segmen-

tation accuracy in case of an under segmentation, i.e., background enclose most

of the volumes. The descriptor �ne(i; j) is used to keep neighborhood data.

4. An object moves as a whole. Although this statement is not true for human

objects, for rigid bodies, it is useful. A change detection mask becomes very

functional in constructing objects that are moving in front of a stationary back-

ground.

5. Color similarity of volumes is potential but not suÆcient. Volumes are already

color consistent, therefore there is little room for utilization of color information
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to determine a neighbor to merge in. In fact, most objects are made from small

volumes that have di�erent colors, i.e., human body consists face, lips, hair,

dress, etc. When forming the similarity measure, color should not be a key

player. However, for speci�c video sequences features people, human skin color

is an important descriptor.

6. Important object is at the center. For this reason, we introduced a focus �lter.

We can �nd good examples as in head-and-shoulder sequences, sports, etc.

In terms of the descriptors, the similarity measure is

� inversely proportional to the distance variance �mv, the directional di�erence

�dd, the parameterized motion di�erence �pm,

� proportional to the compactness ratio �cr, to the mutual surface ratio �sr, the

change detection mask �cd, skin color feature �sk.

To blend all the above observations and statements, we developed a ranking scheme

based similarity measure. For all possible neighboring volume pairs (Vi; Vj), the de-

scriptors are ordered in separate lists r(i; j). Using the ranks in the corresponding

lists, a similarity measure �o(i; j) is computed at the object level o for the pair i; j as

�o(i; j) = cmvr
"
mv(i; j) + cddr

"
dd(i; j) + cpmr

"
pm(i; j)

+ccrr
#
cr(i; j) + csrr

#
sr(i; j) + ccdr

"
dd(i; j) + cskr

#
sk(i; j) (4.47)

where r# is the rank for the pair Vi; Vj in the list that is ordered from the larger

value to smaller, and r" is from smaller value to larger. There are constant weights

c's to adjust the contribution of each descriptors. The pair (V �
i ; V

�
j ) having the

maximum score are merged, and the descriptors are updated accordingly. Clustering

is performed until there are only two volumes remain, i.e. o = 2. Results of above

method are presented in Fig. 4.31.
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Figure 4.31: Fine-to-coarse clustering results at object levels 19, 17, 16, 15, 14, 13,

12, 11, 10, 9, 8, 7, 6, 4, and 3.
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At a level of the clustering algorithm, we can analyze whether the chosen

volume pair at that level ful�ll the motion consistency. This can be done by observing

the behaviour of the similarity score. If this score gets small or shows a sudden drop,

the merge is likely to be not a valid merge although it is the best merge. The derivative

of the similarity score with respect to object level gives this information

@�o

@o
= �o�1 � �o: (4.48)

4.6.2 Coarse-to-Fine Hierarchy

Alternatively, one can prefer to use a partitional clustering method that divides

the volumes into certain number of groups, i.e., into 2, 3 partitions. To achieve a

partitional clustering, a common quanti�er should be decided upon. Since motion is

a distinctive metric of the volumes, motion trajectories are suitable for this purpose.

Parameterized motion models would be used as well. Another quanti�er is the change

detection descriptor.

In coarse-to-�ne clustering, all the volumes are in the same group initially.

Then, the following algorithm is applied to volumes:

1. Partition all volumes into K initial clusters. At the beginning of the algorithm,

there are two initial clusters, i.e., K = 2.

2. Assign each volume to the cluster k whose centroid bCk = [ bCk1
bCk2 :: ]T is

nearest.

3. Recalculate the centroid bCk for the cluster receiving in a new volume and for

the cluster losing a volume.

4. Repeat step 2 until no more assignment takes place.

Initial cluster centroids can be chosen either randomly, or using the perturbed previ-

ous clustering levels K�1 centroids. This method which is also referenced as k-means,
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Figure 4.32: Coarse-to-�ne clustering results at object levels 2, 3, 4, 5, 6, 7, 8, 9, and

10.

tries to minimize the sum of the within cluster variances

KX
k=1

X
i

ÆikjCi � bCkj: (4.49)

The indicator function Æik equals to 1 if the observation Ci comes from cluster k, or

0 otherwise based on the previous iteration. The centroid cCk is made of the mean

values of the elements Ckj in the kth cluster

bCkj =
1

nk

X
l

Clj (4.50)

We denote nk as the number of volumes belonging to the cluster k. In order to increase
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Figure 4.33: Coarse-to-�ne clustering results at object levels 3, 4, 5, 6, 7, 8, 9, and

10.
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the stability in cluster analysis, speci�c weights or adaptive weights in the distance

formula could be applied rather than an ordinary weight. The following weights

qj =
1PK

k

Pnk
i ÆikjCij � bCkjj

(4.51)

can be used in the distance term

jCi � cCkj =
X
j

qjjCij � bCkjj: (4.52)

In coarse-to-�ne clustering we used the trajectories Tk's as the observations Ck's,

jCi � cCkj =
X
j

qjjTij � bTkjj: (4.53)

However, since no neighborhood constraint is involved in the adaptive k-means clus-

tering, the clustered volumes are not required to be connected. This is the main

de�ciency of partitional clustering using adaptive k-means as implemented above.

The spatial position can be incorporated, but weighting the trajectory elements and

spatial location elements becomes another problem. The segmented volumes by adap-

tive k-means clustering are presented in Fig. 4.32.

4.7 Multi-Resolution Object Tree

A computer can help human to overcome tedious tasks involved in segmen-

tation easily, however, no existing object segmentation and recognition system is as

complete as a human being. Therefore, human becomes the ultimate decision maker

in analyzing the results of video segmentation. It is necessary to provide the seg-

mentation results in an appropriate format to user or other decision mechanism for

further analysis. An object-based tree representation that captures the segmentation

results of a video enables e�ective human access.

The segmentation algorithm supplies volumes, their attributes, and informa-

tion about how these volumes should be merged. Putting this information in a tree
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Figure 4.34: Multi-resolution partition of objects in a hierarchical tree representation.

representation, we obtain an object-based structure as demonstrated in Fig. 4.34. In

this tree representation, the video is divided into objects, and objects into volumes.

At the lowest volume level, the descriptors and boundaries are available. Volumes

are homogeneous in color, texture, and they are connected within. The clustering

generates higher levels that are consistent in motion. A background can be identi�ed

using shape, size, motion attributes. In case a user wants to change the clustering

method or reassigns the number of objects, the video is not required to be segmented

again. Only the clustering stage is executed, which takes a negligible computation,

with the already derived descriptors. The object tree can be appended to the video

as a header after the segmentation. If user prefers to outline a boundary around or

on the objects of interest, those objects are instantly detected using the object tree.

4.8 Test Version

Out of several possible con�gurations as proposed in this chapter, we speci�ed

a version to be used as a reference. This version is designed to be computationally as

simple as possible, and it uses suboptimal versions of the procedures. A ow diagram
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Figure 4.35: The version optimized for speed.

is given in Fig. 4.35.

First, the color distance thresholds are adapted by using a similar method as

explained in the centroid-linkage. The �rst frame of the video sequence is subsampled

in both vertical and horizontal spatial directions, and the color histograms are com-

puted for each channel. These histograms are smoothed with recursive application

of a moving average �lter. The �rst and second order derivatives are computed to

determine the local maxima. The numbers of local maxima at each color channel are

used in the distance metric and threshold as presented before.

The minimum gradient method is used to determine the markers. The marker

pixels are selected from the subsampled data instead of the full resolution data. In a

single subsampled frame, the pixel that has the minimum color gradient is selected

as a marker and a volume is initiated. After the current volume is grown, the next

marker is chosen among the pixels of the next frame. The frames are switched in a

cyclic manner to cover all the frames. If the same video frame is used for selecting the
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Figure 4.36: The initial trajectories and minimum variance vs. object level graphs.

markers, a region that is visible only in the remaining frames may not be segmented.

Optimally, all the frames of the input video are required to be searched for the mark-

ers. However, such an exhaustive search would be computationally very expensive.

The frame-wise minimum gradient selection is a sub-optimal solution that accelerates

the search problem signi�cantly.

Centroid-linkage technique is employed when volumes are grown. A color dis-

tance is computed between the candidate pixel and the centroid vector of the current

volume. Intra-frame, inter-frame switching method is utilized to prevent a volume

from having disconnected regions. After the spatiotemporal data are segmented into

volumes, the pixels belong to small and elongated volumes are unmarked and the
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remaining volumes are inated to �ll up the empty pixels by using color distance.

While growing volumes, the corresponding volume trajectories are extracted

simultaneously. In the clustering stage, �ne-to-coarse merging algorithm is employed

to choose the best merge at each object level. The variance of the trajectory distance

descriptor ��(i; j) is used to compute the similarity score of the clustering algorithm.

The initial trajectories in the spatiotemporal data and the trajectory variances of the

merged volumes at each object level are given in Fig. 4.36. The segmentation results

at the various object levels are presented in Figs. 4.37-4.38.

4.9 Summary

We introduced an automatic segmentation framework. Our goal was to detect

accurate boundaries of moving objects. The framework takes multiple video frames

at once, constructs a spatiotemporal data structure, and by using a three dimen-

sional volume growing technique it �nds the smallest components of the video. These

volumes are expanded from the marker points using several linkage methods. Quanti-

tative descriptors that represents each volume, and relational descriptors that capture

the mutual properties of a pair of volumes are determined by evaluating the shape,

trajectory and parameterized motion. The descriptors are utilized in clustering meth-

ods to construct objects. The main stages of the presented automatic segmentation

framework are itemized as

1. Constructing the spatiotemporal data

2. Filtering and simplifying color distributions

3. Assigning markers as seeds of volumes

4. Volume growing

5. Removal of volume irregularities
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Figure 4.37: Test results at object levels 7, 6, 5, 4, 3, 2 for the synthetic sequences.
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Figure 4.38: Test results at object levels 36, 33, 27, 24, 21, 18, 15, 12, 9, 8, 7, 6, 5, 4,

and 2.
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6. Extracting trajectories

7. Deriving quantitative and relational descriptors

8. Clustering volumes into multi-resolution object tree

We developed a spatiotemporal data structure which embodies the color, tex-

ture, edge, change detection, and other features of the video frames in terms of vectors

corresponding to image points.

We implemented two marker selection approaches within the spatiotemporal

data. One approach uses uniformly distributed markers, the second approach assigns

markers by choosing the minimum gradient points.

We discussed several linkage methods; single-linkage, dual-linkage, and centroid-

linkage volume growing. For each method, we proposed threshold adaptation tech-

niques. We proposed to utilize MPEG-7 dominant color descriptors in threshold

determination.

We designed variants of the volume growing. Out of these, the simultaneous

growing and one-at-a-time growing methods basically di�er in the number of markers

that are active at each iteration. The recursive di�usion and intraframe/interframe

switching methods o�er di�erent expansion mechanisms.

We extracted motion trajectory of each volume using the frame-wise center

of masses. We utilized several novel descriptors to quantify volumes. We introduced

the relational descriptor concept which evaluates the similarity of a pair of volumes.

The descriptors are designed to capture the characteristics of volumes as much as to

incorporate priori information and application speci�c constrains. We discussed to

integrate skin color map and change detection map into segmentation framework.

Hierarchical and partitional clustering approaches were adapted to generate

objects. We proposed a rank based similarity measure of volumes. We developed a

multi-resolution object tree representation as an output of the segmentation.
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The proposed framework blends the advantages of color, texture, shape, mo-

tion based segmentation methods in an automatic and computationally feasible way.
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Chapter 5

Concluding Remarks

\Verily, with every diÆculty there is relief."

Automatic object segmentation has potential to improve recognition, identi�-

cation and event analysis of video sequences, it is vital in object-based compression

and coding standards, and also provide a better level of video editing, manipulation

and animation. Towards this goal, several techniques to detect and segment video

objects have been presented and discussed. To conclude this thesis, we �rst summa-

rize the major contributions of this work, then outline several directions for future

work.

5.1 Summary of Main Contributions

The developed segmentation framework combines various disciplines of image

and video processing from �ltering to data clustering. This thesis has addressed a

number of challenging issues associated with video segmentation and image process-

ing. Out of several achievements of the thesis work, the most prominent ones are

emphasized below:
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1. A solution to the problem of fusing color, shape, motion, and also texture,

target color map, change detection map based techniques into a uni�ed seg-

mentation approach is proposed. An automatic moving object segmentation

framework is developed. This framework is designed to be adaptable to the in-

put video and compatible with the speci�c applications. It generates accurate

object boundaries from the color video sequences with a feasible computational

complexity.

We believe that extraction of the smallest homogeneous components of a video

scene, determination of region boundaries in every frame, obtaining video ob-

ject properties, mining for any useful information, and presenting all these video

analysis in a comprehensible setting are among the accomplishments. The in-

terpretation of the segmentation results depends on the user interest, speci�c

application, and the type of the information that is being mined for.

2. A novel 3D volume growing method for video data is introduced. The method

is inspired by region growing, and empowered by expanding the scope of the

2D methods into a 3D spatiotemporal data that is constructed from the video.

Instead of regions, 3D volumes are employed as the smallest constituents of

objects. Adding another dimension enables better analysis of video for seg-

mentation purposes. Within the volume 3D growing method, the following

improvements are also identi�ed:

� A fast marker selection method is designed. To accelerate selection, a

subsampled version of spatiotemporal data is searched for markers. The

search is done in sliced portions of the subsampled data to �nd the local

minima. This provides a suboptimal but signi�cantly fast solution.

� MPEG-7 dominant color descriptor is utilized in adaptive threshold deter-

mination. Segmentation is made adaptable to the input video by analyzing

the color histograms. MPEG-7 dominant color descriptor provides useful
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histogram information, and this is used to decide the thresholds. A loga-

rithmic color distance function is formulated using the adaptive thresholds.

This distance function compensates the color di�erence of separate chan-

nels with respect to their dynamic ranges and variances.

� Di�usion and intraframe-interframe switching segmentation approaches

are developed. Di�usion strategy addresses volume expansion as an inat-

ing balloon. On the other side, intraframe-interframe switching approach

accomplishes frame-wise connected projections of a volume by growing it

�rst into a single frame then expanding to the adjoin frames.

� Rank based volume re�nement strategy is proposed. A similarity score

for each possible volume merge is found by evaluating the ranks of several

descriptors in the corresponding ordered lists to determine the volume

pair that should be merged. Utilizing the ranks in the similarity function

instead of variants of the distance magnitude is a novel method.

3. Motion trajectories are acquired without computing any dense motion. As an

advantage, motion trajectories enable to approximate translational motion of a

region without computing motion vectors. The idea of obtaining translational

motion without a block-matching or optical ow method is novel. In the seg-

mentation framework, these trajectories are used to determine the motion based

object descriptors. In addition, they can also initialize dense motion estimation

algorithms.

4. Quantitative descriptors of each volume are de�ned. We formulated the color,

shape, and motion of a volume in terms of quantitative descriptors. Such de-

scriptors signi�cantly simplify the evaluation of volumes and objects attributes.

Relational descriptors of volume pairs are de�ned. These descriptors measure

the relative similarity of the respective volume attributes such as motion vari-

ance, compactness, existence, etc. They are essential in the �ne-to-coarse hier-
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archical clustering algorithm.

5. Fine-to-coarse hierarchical clustering of volumes is proposed. Volumes are

merged into each other using their descriptors. This methodology can also

be adopted to the region segmentation problems. Multi resolution object tree

representation of video is conceptualized. The object tree can be appended to

the video as a header after the segmentation. If user prefers to utilize a di�erent

metric in the clustering part or speci�es the number of objects, the segmentation

process is not repeated, but only the multi-resolution tree is restructured.

In addition, e�ects of color space selection on color based segmentation are

investigated. Three subjective tests are designed to evaluate performances of several

color spaces for region growing.

Also, a human skin color cluster in the Y UV color space is parameterized.

The parameters are obtained by training cluster model with the test images. This

cluster is implemented as a look-up table to minimize the computation time.

To improve on video �ltering, a novel Lorentzian-based image simpli�cation

method is developed. The simpli�cation �lter is robust towards the deviations such

as the outlier points. This simpli�cation method is employed to �lter the noise, as

well as to remove �ne texture in terms of the high frequency spatial color distribution.

In summary, the future and success of automatic video segmentation appli-

cations will depend on a variety of key components. These components will be re-

sponsible for everything from object-based coding, to the content analysis, indexing,

retrieval, identi�cation, recognition, editing, manipulation and animation. In this

thesis, we focus on the components of this object extraction system that deal with

traditional video processing and data understanding issues. More speci�cally, the is-

sues related to homogeneous region growing theory and the clustering of video objects,

as well as the classical problem of �ltering. The results that we have obtained are

promising and the contributions of this work have already had a noticeable impact.
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5.2 Future Directions

This research will serve as a stepping stone for the further developments of

the automatic segmentation concept. Among such extensions, application speci�c

modi�cations, hierarchical volume growing methodologies, adaptation for streaming

video could be considered in future work.

Improvements on the Algorithm

Application Speci�c Constraints

The modular design of the segmentation framework enables embedding ap-

plication speci�c constraints. One such example is road surveillance video in which

cameras are often stationary and regularly moving objects motion can be limited

within the road boundaries. In addition, the motion of the vehicles can be analyzed

to detect congestion, accident, or suspicious behaviour, e.g., driving in the opposite

lane. Similarly, for human objects, a skin color feature and length-height aspect

ratio can be incorporated. The volume descriptors are suitable to integrate such

constraints.

Hierarchical Volume Growing Methods

One possible improvement on the current implementation is developing hierar-

chical volume growing methods to improve the speed of the segmentation processes.

Hierarchical growing manages �ne spatial texture e�ectively, however the blocking

artifacts may occur on the boundaries. Smaller volumes may not be detected either.

The propagation of the segmentation information between the layers, fast generation

and indexing of low resolution data structures are some of the issues to be considered.

Adaptation for Memory Constraints

Due to the memory considerations, the spatiotemporal data can be constructed

up to a certain number of video frames each time, then the object information is prop-

agated to the following data structure. For this purpose, the object descriptors and
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boundaries can be used to initialize the new markers and volumes as it is done in the

standard tracking approaches. In this way, video adaptive parameters, such as color

distance thresholds can be reused to reduce the computational load. On the other

hand, object correspondence problem between the two spatiotemporal data becomes

a main issue. Correspondence problem has to address some other irregularities such

as occlusion, newly appearing, and disappearing objects as well.

Extensions on Multi-Resolution Object Tree

In some applications, it may be useful to have a clustering that is not a parti-

tion. This means clusters are overlapping. Fuzzy clustering and functional clustering

are ideally suited for this purpose. Also, fuzzy clustering algorithms can handle mixed

data types. However, a major problem with fuzzy clustering is that it is diÆcult to ob-

tain the membership values. It is required to represent clusters obtained in a suitable

form to help the decision mechanism speci�c to the application.

Integration with Other Systems

Adaptation for semi-automatic object extraction methods is a possible exten-

sion for the proposed segmentation framework. For semi-automatic algorithms, the

user is required to identify the semantic objects of interest initially, and contours of

regions of interest are passed to the computer. These regions are tracked temporally

from the previous frame. Since temporal tracking tends to introduce boundary errors,

the region boundary needs to be modi�ed and updated according to homogeneity cri-

teria in the current frame. Parametric motion models are utilized for temporal track-

ing while the active snake contour, the watershed algorithm and other techniques are

employed for spatial region boundary updates. The use of volume growing approach

can provide region boundaries while keeping the computational cost low.

The multi-resolution object-tree is a structured representation of the objects

that can be obtained from an initial partition. The leaves of the tree represent
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objects that belong to the initial partition. The remaining nodes of the tree represent

objects that are obtained by merging the other objects. The root node represents

the entire video. The tree represents a fairly large set of objects at di�erent scales.

Large objects or objects having distinctive motion appear close to the root whereas

small details can be found at lower levels. This representation should be considered

as a compromise between representation accuracy and processing eÆciency. The

main advantage of the tree representation is that it allows the fast implementation of

sophisticated processing techniques. These properties can be used towards developing

eÆcient video representation, analysis, search, and browsing tools.
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